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A model hypothesizing that basic mechanisms of associative learning and generalization underlie object
categorization in vertebrates can account for a large body of animal and human data. Here, we report two
experiments which implicate error-driven associative learning in pigeons’ recognition of objects across
changes in viewpoint. Experiment 1 found that object recognition across changes in viewpoint depends
on how well each view predicts reward. Analyses of generalization performance, spatial position of pecks
to images, and learning curves all showed behavioral patterns analogous to those found in prior studies of
relative validity in associative learning. In Experiment 2, pigeons were trained to recognize objects from
multiple viewpoints, which usually promotes robust performance at novel views of the trained objects.
However, when the objects possessed a salient, informative metric property for solving the task, the
pigeons did not show view-invariant recognition of the training objects, a result analogous to the over-
shadowing effect in associative learning.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Visually recognizing objects in the environment confers a clear
advantage for the survival and reproduction of any animal. Among
many functions, object recognition allows the animal to detect
food, conspecifics, and predators.

An important computational problem posed by object recogni-
tion (Rust & Stocker, 2010) is that of invariance: the same object
can project very different images to the retina, depending on such
factors as viewpoint, position, scale, clutter, and illumination. The
present work focuses on understanding how a biological visual
system (i.e., the pigeon) learns to recognize objects across varia-
tions in viewpoint.

Several experiments have explored whether pigeons show
view-invariant object recognition after being trained with only
one object view. These experiments have uniformly found that pi-
geons do not show one-shot view invariance, regardless of the type
of object used to generate the experimental stimuli (Cerella, 1977;
Friedman, Spetch, & Ferrey, 2005; Lumsden, 1977; Peissig et al.,
1999, 2000; Wasserman et al., 1996). However, pigeons do show
above-chance performance with novel views of the training object
after training with just one view and they exhibit generalization
behavior that is closer to true view invariance as the number of
ll rights reserved.

oto).
training views is increased (Peissig et al., 2002, 1999; Wasserman
et al., 1996).

These and other studies suggest that the pigeon’s recognition of
objects from novel viewpoints depends on similarity-based gener-
alization from the training views (Spetch & Friedman, 2003;
Spetch, Friedman, & Reid, 2001), prompting these questions:
Which object properties do pigeons use to generalize performance
from training images to novel images? How are such properties ex-
tracted from images? How are such properties selected during
training to guide performance in a particular task?

Regarding the first question, evidence suggests that pigeons ex-
tract view-invariant properties from images and rely heavily on
them for object recognition (Gibson et al., 2007; Lazareva,
Wasserman, & Biederman, 2008). For example, Gibson et al.
(2007) trained pigeons (and people) to discriminate four simple
volumes shown from a single viewpoint in a four-alternative
forced-choice task. Once the subjects attained high performance
levels in the task, the researchers used the Bubbles technique
(Gosselin & Schyns, 2001) to determine which properties of the
images the subjects used for recognition. The results showed that
pigeons (and people) relied more heavily on properties that are rel-
atively invariant across changes in viewpoint, such as cotermina-
tion and other edge properties, than on properties that vary
across changes in viewpoint, such as shading.

However, pigeons show pronounced decrements in recognition
performance when they are tested with novel object views that re-
tain view-invariant properties (Peissig et al., 1999, 2000, 2002) and
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with images that have been manipulated only in view-specific
properties, such as shading (e.g., Young et al., 2001). In sum, the
evidence suggests that pigeons recognize objects from novel view-
points through a generalization-based mechanism, and that gener-
alization might be based on the extraction of both view-invariant
and view-specific shape properties.

We propose that this evidence is best interpreted within the
framework of the recently proposed ‘‘Common Elements Model’’
(Soto & Wasserman, 2010a, 2012) of object categorization learning,
which is based on the idea that basic mechanisms of associative
learning and generalization underlie pigeons’ ability to classify
natural objects. Because such basic mechanisms are widespread
among vertebrate species, they might also play a role in object cat-
egorization by other species, including humans (see Soto & Wass-
erman, 2010b).

The Common Elements Model proposes that each image in a
categorization task is represented by a set of ‘‘elements,’’ which
can be interpreted as coding visual properties in a training image.
These properties vary widely in the level to which they are re-
peated across members of the category. In the case of view-invari-
ant object recognition, properties would show varied levels of view
invariance, going from relatively view-invariant properties, which
are repeated across many views of the same object, to view-spe-
cific properties, which are idiosyncratic to a particular object view.
Importantly, the model also suggests a mechanism that selects
which properties should control the performance of each available
response in a recognition task. This selection process is carried out
through associative error-driven learning, which selects those
properties that are more informative as to whether the response
will lead to a reward.

Consider how the Common Elements Model would explain the
effect of training with multiple views of an object on the later rec-
ognition of novel views. Training with different views of the same
object would lead to a ‘‘repetition advantage’’ effect for view-
invariant properties. View-invariant properties are often repeated
across different training views and they are frequently paired with
the correct responses. This repetition gives them an advantage in
controlling performance over view-specific properties, which are
not common to many views and therefore do not frequently get
paired with the correct response. Even if both types of property
are informative as to the correct responses in the task, learning
continues only until there is no error in the prediction of reward.
At this point, view-invariant properties block view-specific proper-
ties from acquiring an association with the correct responses.
When novel views of the object are presented in testing, these test-
ing views are likely to share some view-invariant properties with
Table 1
Design of Experiment 1, which tested an analog of the relative
stands for reinforcement and ‘‘NRf’’ stands for nonreinforcem

Training Generalization tes

Uncorrelated
Geon 1 – 0�/50% Rf Training trials +
Geon 1 – 120�/50% Rf Geon 1 – Rotated
Geon 1 – 240�/50% Rf Geon 1 – Rotated
Geon 1 – 60�/50% Rf
Geon 1 – 180�/50% Rf
Geon 1 – 300�/50% Rf

Correlated
Geon 2 – 0�/Rf Training trials +
Geon 2 – 120�/Rf Geon 2 – Rotated
Geon 2 – 240�/Rf Geon 2 – Rotated
Geon 2 – 60�/NRf
Geon 2 – 180�/NRf
Geon 2 – 300�/NRf
the training views, leading to the successful generalization of
performance.

Thus, the hypothesis that pigeons extract visual properties with
differing levels of view invariance can explain why they show, on
the one hand, extremely view-dependent recognition after training
with a single view of an object and, on the other hand, they show
high sensitivity to view-invariant object properties. Training with a
single view of an object leads to the control of behavior by both
view-invariant and view-specific properties, because there is no
repetition advantage for the former. Even if view-invariant proper-
ties are highly salient, behavior must generalize imperfectly to no-
vel views of an object, which do not share the same view-specific
properties as the training view.

The present work presents the results of two experiments test-
ing the predictions of the Common Elements Model of view-invari-
ance learning by pigeons. Specifically, these experiments test the
assumption that visual properties are selected to control perfor-
mance in object recognition tasks through an associative learning
mechanism driven by reward prediction error. Error-driven learn-
ing should lead to competition between view-invariant and
view-specific properties for control of performance in object recog-
nition tasks. The experiments show that results analogous to the
relative validity effect (Wagner et al., 1968) and overshadowing
(Pavlov, 1927) from the associative learning literature can be found
in object recognition experiments. These are two key effects that
proved to be central to the development of associative learning
theories based on the notion of prediction error. If view-invariance
learning in pigeons is driven by reward prediction error, then such
experimental designs should reveal competition for behavioral
control between view-invariant and view-specific object
properties.
2. Experiment 1

A relative validity experiment in Pavlovian conditioning (Wag-
ner et al., 1968; Wasserman, 1974) involves training with two
compound stimuli: AX and BX. In the Uncorrelated condition, each
compound is reinforced 50% of the time. In the Correlated condi-
tion, AX is always reinforced and BX is never reinforced. Even
though, in both conditions, X is reinforced 50% of the time—and
hence its absolute predictive value is the same—subjects in the
Uncorrelated condition respond more to this stimulus than do sub-
jects in the Correlated condition. Thus, conditioning to X depends
on the informative value of the other stimuli that are presented
in compound with it. When A and B are reliable predictors of the
validity effect in view-invariant object recognition. ‘‘Rf’’
ent.

t

around x-axis at 30�, 90�, 150�, 210�, 270�, 330�/NRf
around y-axis at 30�, 90�, 150�, 210�, 270�, 330�/NRf

around x-axis at 30�, 90�, 150�, 210�, 270�, 330�/NRf
around y-axis at 30�, 90�, 150�, 210�, 270�, 330�/NRf
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outcome, X does not acquire much associative strength despite its
being paired with reinforcement 50% of the time.

The main goal of the present experiment was to investigate an
analog of the relative validity effect in view-invariance learning by
pigeons, in which the roles of Stimuli A, B, and X were replaced by
hypothetical view-specific and view-invariant stimulus properties.
The within-subjects design is detailed in Table 1. This design en-
tails two conditions, each trained on a Go/No-Go task involving
images of a geon shown from six different viewpoints. Both condi-
tions involve testing novel views of the training geon.

In the Uncorrelated condition, all of the training views were
reinforced and nonreinforced 50% of the time, whereas in the Cor-
related condition, half of the training views were reinforced 100%
of the time and half were nonreinforced 100% of the time. In both
cases, the geon itself and properties that were invariant across
changes in viewpoint were reinforced and nonreinforced equally
often. However, only in the Correlated condition was information
specific to each view a perfect predictor of whether responses
would be reinforced or nonreinforced.

An error-driven learning rule would predict that properties that
are invariant across views and properties that are specific to each
view should compete for control of behavior during learning.
When view-specific properties are diagnostic of the correct re-
sponse and view-invariant properties are not, as in the Correlated
condition, the view-invariant properties should decrease their con-
trol over behavior; hence, generalization to novel views during the
Testing phase should be reduced. However, if view-specific and
view-invariant properties are equivalent predictors of the correct
response, as in the Uncorrelated condition, then view-invariant
properties should acquire greater control over behavior, thereby
yielding higher generalization of responding to novel views during
the Testing phase.

Responding to views that are interpolated between the training
views will probably be highly influenced by generalization from
the immediately adjacent views. In the Correlated condition, one
of the training views should produce responding and the other
should not. In the Uncorrelated condition, both training views
should produce responding. A higher level of generalization for
the interpolated views in the Uncorrelated condition might be
the result of generalization from two immediately adjacent
training views instead of just one. This possibility would be partic-
ularly critical if, with enough training, the level of responding to
continuously and partially reinforced stimuli were similar. The
same argument cannot be made about novel views from an axis
which is orthogonal to that used to generate the training stimuli.
Thus, this problem was solved by also testing the pigeons with
such novel orthogonal views (Peissig et al., 2002).

The relative validity effect in pigeons can be measured not only
by means of generalization tests, but also by directly measuring
selective responding to the different elements of a compound dis-
criminative stimulus during training. Wasserman (1974) found
that, in a Pavlovian relative validity design, responding directly
at the common cue was relatively high in the Uncorrelated condi-
tion, but low in the Correlated condition. Responding directly at
the distinctive cue that was positively predictive of reinforcement
in the Correlated condition was high, whereas responding directly
at the corresponding distinctive cue in the Uncorrelated condition
was lower than to the common cue. This pattern of results suggests
that pigeons preferentially peck stimuli that are more strongly
associated with reinforcement.

It has more recently been reported that preferential pecking can
be used to identify the features of complex stimuli that pigeons use
to solve visual discriminations in Go/No-Go tasks (Dittrich et al.,
2010). Because the present experiment used such a Go/No-Go task,
the spatial position of pigeons’ pecks directly at the images was re-
corded for analysis, thereby opening the door to finding an analo-
gous effect to that reported by Wasserman (1974) in Pavlovian
conditioning: namely, a higher concentration of pecks to common
cues in the Uncorrelated condition and to distinctive cues in the
Correlated condition.

A final prediction of the Common Elements Model for this
experiment is that responding to both reinforced and nonrein-
forced stimuli in the Correlated condition should increase early
in training, with responding to the nonreinforced stimuli decreas-
ing later, thereby tracing a nonmonotonic learning curve. This pre-
diction holds because, early in training, properties that are
common to several training views are repeated often and should
acquire control of responding faster than view-specific properties.
Only after substantial training can the view-specific properties in
each image begin to control responding to allow the discrimination
of reinforced and nonreinforced stimuli.

In sum, an account of view-invariance learning based on error-
driven associative learning (Soto & Wasserman, 2010a, 2012) pre-
dicts that we should find greater generalization of responding to
novel views of an object in the Uncorrelated than in the Correlated
condition as well as an initial increase in responding to
nonreinforced stimuli during training in the Correlated condition.
Furthermore, assuming that peck location is a sensitive index of
the areas in a visual stimulus that control performance, then pecks
should be directed to common spatial locations across all images in
the Uncorrelated condition, whereas pecks should be directed to
distinctive spatial locations in each of the images in the Correlated
condition.

2.1. Method

2.1.1. Subjects and apparatus
The subjects were four feral pigeons (Columba livia) kept at 85%

of their free-feeding weights. The birds had previously participated
in unrelated research.

The experiment used four 36- � 36- � 41-cm operant
conditioning chambers (see Gibson et al., 2004), located in a dark
room with continuous white noise. The stimuli were presented
on a 15-in. LCD monitor located behind an AccuTouch� resistive
touchscreen (Elo TouchSystems, Fremont, CA) which was covered
by mylar for durability. A food cup was centered on the rear wall
of the chamber. A food dispenser delivered 45-mg food pellets
through a vinyl tube into the cup. A houselight on the rear wall
of the chamber provided ambient illumination. Each chamber
was controlled by an Apple� iMac� computer and the experimental
procedure was programmed using Matlab Version 7.9 (� The
MathWorks, Inc.) with the Psychophysics Toolbox extensions
(Brainard, 1997).

2.1.2. Stimuli
The stimuli were computer renderings of two simple three-

dimensional volumes or ‘‘geons’’: a wedge and a horn, which vary
from one another in several properties (e.g., cross-section, curva-
ture of main axis, and tapering). Object models were created using
the 3-D graphics software Blender 2.49 (The Blender Foundation,
freely available at www.blender.org). The objects were rotated in
depth by 30� intervals along their x-axis to yield a total of 12 views,
and rotated in depth by 60� intervals within the y-axis of rotation,
yielding another six testing views. If necessary, the rendering view-
points were allowed to vary within a margin of plus or minus 10�,
to prevent the objects from being shown at accidental views (Bie-
derman, 1987). Stimuli were rendered over a white background,
using a camera placed directly in front of the object. Two lights
illuminated the object from the front; one slightly to the left of
the camera and the other near the top right of the object. The final
stimuli were 7.4 � 7.4 cm in size when displayed on each pigeon’s
screen during the experiment.

http://www.blender.org
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2.1.3. Procedure
Each pigeon was trained on the two conditions shown in Table

1, using a Go/No-Go task. One geon was assigned to each condition,
with the assignments counterbalanced across birds.

All of the trials began with the presentation of a white rectangle
in the center display area of the screen. A single peck to the rectan-
gle led to the presentation of a stimulus. On a reinforced trial, the
stimulus was presented and remained on for 15 s; the first re-
sponse after this interval turned the display area black and led to
the delivery of food. On a nonreinforced trial, the stimulus was pre-
sented and remained on for 15 s, after which the display area auto-
matically darkened and the intertrial interval began. On all trials,
scored responses were recorded only during the first 15 s of stim-
ulus presentation. The intertrial interval randomly ranged from 6
to 10 s. Reinforcement consisted of 1–3 food pellets.

In training, each session consisted of 14 blocks with the 12 trials
described in Table 1, for a total of 168 trials per session. In the Cor-
related condition, three views of one geon were reinforced and
three views of the same geon were nonreinforced, whereas in the
Uncorrelated condition, all of the views of each geon were rein-
forced and nonreinforced equally often. To evaluate performance,
a discrimination ratio was computed for the stimuli in the Corre-
lated condition by taking the mean response rate to the reinforced
stimuli and dividing it by the sum of the mean response rate to the
reinforced stimuli plus the mean response rate to the nonrein-
forced stimuli. Training continued until each bird achieved a ratio
higher than 0.85; then, testing ensued.

In each testing session, two warm-up training blocks were fol-
lowed by two testing blocks. The testing block included one nonre-
inforced presentation of each of 12 novel views of the two geons,
randomly interspersed in four blocks of training trials. The total
number of trials in each testing session was 144. Testing continued
until the pigeon completed a total of 35 sessions. Across the entire
experiment, trials within each testing session were randomized in
blocks.
2.2. Results and discussion

A generalization ratio was computed by taking the mean re-
sponse rates to each novel stimulus presented during the Testing
phase and dividing it by the mean response rate to all of the rein-
forced training stimuli in each condition.
Fig. 1. Results of the generalization test of Experiment 1. Plotted in the polar spik
Fig. 1 depicts the two polar plots of the mean generalization ra-
tios for all of the testing stimuli. The left plot shows the results
with new views of the objects rotated within the same axis used
to generate the training views. The right polar plot shows the re-
sults with new views of the objects rotated across an axis that
was orthogonal to the training axis. The generalization ratios from
the Correlated condition are plotted using a darker shade of gray
than those from the Uncorrelated condition. It can be seen from
the left plot that there was greater generalization of responding
in the Uncorrelated condition (M = 0.81, SD = 0.08) than in the Cor-
related condition (M = 0.31, SD = 0.14) to novel views within the
training axis. The right plot shows that there was also greater gen-
eralization of responding in the Uncorrelated condition (M = 0.67,
SD = 0.05) than in the Correlated condition (M = 0.24, SD = 0.05)
for novel views from the orthogonal axis. This pattern of results
was observed for each pigeon.

To determine the statistical reliability of these results, a 2 (Con-
dition) � 2 (Rotational Axis) � 6 (Degree of Rotation) repeated-
measures ANOVA was conducted, with generalization ratio as the
dependent measure. This analysis yielded a significant main effect
of Condition, F(1,3) = 83.83, p < 0.01, confirming that generaliza-
tion to novel views was reliably greater in the Uncorrelated condi-
tion than in the Correlated condition. The main effect of Rotational
Axis was also significant, F(1,3) = 25.79, p < 0.05, reflecting the
greater generalization observed for novel views in the Training
Axis than for novel views in the Orthogonal Axis. The main effect
of Degree of Rotation was also significant, F(5,15) = 5.21, p < 0.01,
due to the fact that generalization to some views was greater than
to other views. None of the interactions were significant.

These results indicate that generalization of responding to novel
viewpoints of an object not only depends on how often responses
to the object have been reinforced, but also on how well each view
of the object predicts food reward. More generalization of a learned
response to novel views is observed when individual training
views are poor predictors of reinforcement than when individual
training views are good predictors of reinforcement. The results
in Fig. 1 are essentially the same as those previously found in a nat-
ural object categorization experiment (Exp. 2 in Soto and Wasser-
man (2010a)), attesting to the generality of the relative validity
effect in complex visual shape discriminations.

The pattern of results during generalization testing was the
same when the raw mean response rates were analyzed. As shown
es is the generalization ratio for different novel views of the training objects.



Fig. 2. Mean response rates to training and testing stimuli during the generaliza-
tion test of Experiment 1. Error bars represent standard errors.
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in Fig. 2, mean response rate to the testing stimuli in the Uncorre-
lated condition was higher than in the Correlated condition
throughout testing. Furthermore, the opposite result was observed
for the mean response rates to reinforced training stimuli (Fig. 2,
top). Thus, across all testing sessions, the pattern of responding
to the testing stimuli cannot be explained by a general tendency
Fig. 3. Estimated peck densities for reinforced views of each geon, obtained after learn
pigeon are shown. Warmer colors represent higher peck densities. (For interpretation of
of this article.)
to respond more to stimuli in the Uncorrelated condition than in
the Correlated condition.

The recorded peck locations to the testing stimuli were used to
estimate peck densities over the images using kernel density esti-
mation (see Scott, 2004; Scott & Sain, 2005) with a Gaussian kernel
and automatic selection of bandwidth according to a ‘‘rule of
thumb’’ (Silverman, 1986). This method allows one to obtain a
smooth estimate of the areas in an image at which pigeons are
pecking and to show graphically which aspects of the stimuli are
used to solve the discrimination.

The analysis was focused on those images that were always
reinforced in the Correlated condition because: more pecks to
these images were recorded, the number of pecks was similar
across the two conditions, and pecks to these images were rein-
forced in both conditions. Thus, any differences between condi-
tions in peck location are likely to be due to differences in the
discrimination tasks.

Note that pecks to the selected images were continuously rein-
forced during training in the Correlated condition, but only par-
tially reinforced during training in the Uncorrelated condition. It
has been found that pigeons increase the spatial and temporal var-
iability of their pecks to a discriminative stimulus when the prob-
ability of reward decreases, in both instrumental (Stahlman,
Roberts, & Blaisdell, 2010) and Pavlovian tasks (Stahlman, Young,
& Blaisdell, 2010). Thus, it was expected that the spatial variability
of responses would be higher in the Uncorrelated than in the Cor-
related condition. However, there was no reason to expect reward
probability per se to induce a difference between conditions in the
areas of the images that attracted more pecks.

Peck densities were estimated from two data sets. The most
interesting data set involved peck locations during testing sessions,
after learning of the discrimination given in the Correlated condi-
tion. The second data set involved peck locations during the first
five sessions of training, before learning of the discrimination in
the Correlated condition was complete; the absence of learning
was corroborated by the observation that none of the pigeons
showed a DR higher than 0.6 during these initial training sessions.
This data set was included to ensure that any differences between
conditions in peck location were not due to stimulus factors alone,
but arose as the result of learning in the experiment.

Fig. 3 shows the peck densities of a representative pigeon for
the reinforced views of the two geons obtained after learning.
ing of the discrimination task of Experiment 1. The data of a single representative
the references to color in this figure legend, the reader is referred to the web version



Fig. 4. Results of the analysis of peck densities from Experiment 1. Panel A shows
the mean entropy of the peck density estimates. Panel B shows the mean KL
divergence of the peck density estimates. Panel C shows the mean Proportion of
Object Pecks.
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Warmer colors represent a higher density of pecking. Pecks in the
Correlated condition seem to be more focused in a small area of the
image, whereas pecks in the Uncorrelated condition seem to be
more widespread. Also, peck densities seem to cover a very similar
area across images in the Uncorrelated condition, whereas peck
densities cover slightly different areas across images in the Corre-
lated condition. Finally, pecks are located on the object itself to a
larger extent in the Correlated condition than in the Uncorrelated
condition. Similar results were observed for the other three birds.

To quantitatively evaluate differences between conditions, the
peck densities were used to estimate three values for each pigeon.
The first value was the average entropy of peck location, which can
be regarded as a measure of spatial dispersion of the peck densi-
ties, and was measured using a resubstitution estimate (Beirlant
et al., 1997) given by

bH ¼ � 1
N

XN

n¼1

lnðp̂ðxnÞÞ; ð1Þ

where p̂ðxÞ is the kernel density estimate at location x and the sum
is over all pecks in the sample, indexed by n.

The second computed value was the average Kullback–Leibler
(KL) divergence between pairs of densities from the same condi-
tion, which is a measure of how dissimilar the spatial distributions
were for pecks to different views of the same object. For a pair of
kernel density estimates, p̂ðxÞ and q̂ðxÞ, the KL divergence was esti-
mated by sampling values of x from the density p̂ðxÞ and then
computing

bDKL ¼
1
N

XN

n¼1

lnðp̂ðxnÞÞ �
1
N

XN

n¼1

lnðq̂ðxnÞÞ: ð2Þ

Since the KL divergence is not symmetric, it was computed
twice for each pair of images and the two values were averaged
to get a single index of dissimilarity.

The third computed value was the Proportion of Object Pecks,
defined as the proportion of the total area in each density that
was located in the area occupied by the object.

Fig. 4A shows the mean entropy measures for both conditions
before and after learning of the discrimination task. Although re-
sponse variability seemed to decrease with learning and was
slightly lower in the Correlated condition than in the Uncorrelated
condition, both effects were rather small. A 2 (Learning Stage) � 2
(Condition) repeated-measures ANOVA with average entropy as
the dependent variable confirmed these observations, with neither
the main effects nor the interaction being significant. Thus, this
experiment did not find a reliable increase in spatial variability
of responses with a decrease in the probability of reward, as re-
ported previously (Stahlman, Roberts, & Blaisdell, 2010; Stahlman,
Young, & Blaisdell, 2010).

Fig. 4B shows the mean KL divergence measures in both condi-
tions before and after learning of the discrimination task. In this
case, it is clear that learning had an impact on the distribution of
responses. Before learning, the level to which peck densities dif-
fered from each other was quite similar between conditions. After
learning, differences in peck densities were larger in the Correlated
condition than in the Uncorrelated condition. A 2 (Learning
Stage) � 2 (Condition) repeated-measures ANOVA with average
KL divergence as the dependent variable confirmed these observa-
tions. There were significant effects of Condition, F(1,3) = 11.01,
p < 0.05, and the interaction between Condition and Learning
Stage, F(1,3) = 15.177, p < 0.05. Planned comparisons (2-tailed) re-
vealed that the difference between conditions was significant after
learning, t(3) = 3.68, p < 0.05, but not before learning, t(3) = 2.21,
p > 0.1. The main effect of Learning Stage was not significant.

Fig. 4C shows the mean Proportion of Object Pecks for both con-
ditions before and after learning of the discrimination task. This
measure also revealed a notable impact of learning on the distribu-
tion of responses. Before learning, pecks were located on the object
itself to a similar extent in the Correlated and Uncorrelated condi-
tions. After learning, the extent to which pecks were located on the
object did not change much in the Correlated condition, but it
decreased in the Uncorrelated condition. A 2 (Learning Stage) � 2
(Condition) repeated-measures ANOVA with Proportion of Object
Pecks as the dependent variable revealed a significant main effect
of Condition, F(1,3) = 13.16, p < 0.05, but no significant effects of
Learning Stage or the interaction between the factors. The main
effect of Condition was significant in this comparison instead of
the interaction because, as seen in Fig. 4C, the Proportion of Object
Pecks was already a bit higher in the Correlated than in the
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Uncorrelated condition before learning. Planned comparisons (2-
tailed) revealed that the difference between conditions was signif-
icant after learning, t(3) = 4.68, p < 0.05, but not before learning,
t(3) = 0.79, p > 0.1.

In sum, when each view of an object was a good predictor of
food reward, pigeons selectively pecked different regions of the im-
age across different views, and those regions overlapped with the
area occupied by the object. On the other hand, when none of
the individual views of an object was a good predictor of food re-
ward, pigeons pecked a common region of the images across differ-
ent views, which tended to fall outside the area occupied by the
object. This pattern of results is analogous to that found by
Wasserman (1974) in Pavlovian conditioning. Thus, the relative
validity effect found using an object recognition task shares several
features with the relative validity effect in simple associative learn-
ing tasks, strengthening the idea that birds learn complex visual
categorization tasks using error-driven associative learning
mechanisms.
Fig. 5. Learning curves obtained for reinforced and nonreinforced stimuli in the Correla
shows the data of each individual pigeon.
There are two things to note about the selective pecking of areas
outside the object observed in the Uncorrelated condition. First,
allocating pecks outside the object seems to be an effect of learning
instead of the default strategy used by the pigeons. As can be seen
in Fig. 4C, most of the effect of learning over the Proportion of
Object Pecks seemed to result from a decrease in the allocation
of pecks to the object in the Uncorrelated condition rather than
an increase in the allocation of pecks to the object in the Correlated
condition. Second, it is possible that when pigeons peck outside the
object they might be aiming at properties of the object edges that
are common across changes in viewpoint, at least in some cases.
For example, in the results shown for the Uncorrelated condition
in Fig. 3, pecks are concentrated in an area that contained a feature
common to all of the training images: a single corner oriented to
the right. It is difficult to evaluate whether or not this common fea-
ture controlled pigeons’ behavior without a test involving direct
manipulation of the image, but the pattern of results was identical
in the other pigeon trained with the same stimulus assignment.
ted condition of Experiment 1. Panel A shows the averaged data, whereas panel B
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Regardless of whether the pigeons in the Uncorrelated condi-
tion aim at the white background or at common edge properties
in the images, it seems clear that they concentrate their pecks in
an area of the images that is similar across viewpoints and that
they restrict their pecks to the same area across all views of the
same object.

Learning curves for stimuli in the Correlated condition were
built using Vincentized Blocks (Kling & Riggs, 1971), which group
sessions into a fixed number of blocks for each bird. Fig. 5A shows
mean response rates across training blocks for both reinforced (so-
lid circles) and nonreinforced (open circles) stimuli in the Corre-
lated condition. Pigeons showed very high levels of responding to
all of the stimuli from the inception of training, presumably be-
cause of strong generalization of responding from the stimuli re-
warded during pretraining (pigeons were pretrained to peck at
colored squares on the screen). Thus, although responding was
high to nonreinforced stimuli during the early stages of training,
it is difficult to determine whether this result was due to general-
ization from the reinforced stimuli, as predicted by the Common
Elements Model, or to generalization from the pretraining stimuli.

The monotonic decrease in mean response rate observed in the
group data might be an artifact of averaging. The individual learn-
ing curves were considerably more concave than the average curve
in Fig. 5A, but with large variability in the size and location of the
initial concavity across pigeons. Individual learning curves are
plotted in Fig. 5B. They reveal that for two pigeons (85Y and
60Y) response rate to nonreinforced stimuli rose and stayed high
for several training blocks before starting to decrease. For Pigeon
16W, responding increased during the first three blocks, then the
bird behaved rather erratically until Block 24; finally, response rate
decreased steadily after Block 24. Pigeon 17B also showed an in-
crease in responding at the beginning of training, but it was tran-
sient. Note, however, that this pigeon showed the highest initial
rate of responding among the birds.

Despite the fact that birds showed high levels of responding to
nonreinforced stimuli from the inception of training, it is still pos-
sible to test the prediction that, because view-invariant elements
acquire control of performance early in training, the pattern of
responding should be similar for reinforced and nonreinforced
stimuli in the early stages and it should subsequently differ for
both stimulus types.

Looking at the correlation between mean response rates for
reinforced and nonreinforced stimuli across training might be a
sensitive test for changes in the control of performance by view-
invariant elements. The Pearson correlation between response
rates to reinforced and nonreinforced stimuli was computed for
each pigeon in two stages of training: For training Blocks 1–10
and for training Blocks 11–20. If performance is controlled by
view-invariant properties early in training, then the correlations
for early training blocks should be higher than the correlations
for late training blocks. Individual correlation coefficients were
converted to Fisher’s z values, which were then averaged, and
the result converted back to a correlation coefficient, denoted by
rz (Corey, Dunlap, & Burke, 1998). This average correlation between
response rates was higher during Blocks 1–10 (rz = 0.74) than dur-
ing Blocks 11–20 (rz = 0.27), a difference that was statistically sig-
nificant, z = 2.94, p < 0.01.

To summarize the results regarding learning curves, high re-
sponse rates to all of the stimuli do not allow one to directly con-
firm the prediction of a concave learning curve for nonreinforced
stimuli in the average group data (Fig. 5A). However, some of the
individual learning curves did appear to be concave (Fig. 5B). Also,
evidence from a correlational analysis suggested similar control of
behavior by reinforced and nonreinforced stimuli early in training
(Blocks 1–10), but not later in training (Blocks 11–20). These re-
sults, together with those from the generalization test and the peck
density analysis, suggest that error-driven associative learning
plays a key role in pigeons’ learning to recognize objects across
variations in viewpoint.

An alternative explanation of the results of the present experi-
ment is that pigeons in Go/No-Go tasks learn to respond indiscrim-
inately to all of the stimuli presented on the screen, but to
withhold responding to the set of nonrewarded stimuli in the Cor-
related condition. So, when the birds are presented with new
images from the training categories or training objects, they keep
responding indiscriminately to all these new stimuli, except those
that look similar to the nonrewarded images in the Correlated con-
dition. Because of perceptual similarity, new stimuli in the Corre-
lated condition should be more likely to show this generalized
inhibition than new stimuli in the Uncorrelated condition. Thus,
the effect shown in Figs. 1 and 5 could be explained as the result
of differential inhibitory generalization instead of error-driven
learning.

This hypothesis does not provide a full account of the data from
the peck density analysis. Remember that pigeons displaced their
pecks from within the object to outside the object after learning
in the Uncorrelated condition. This response pattern could be ex-
plained as the outcome of generalization of inhibition, by assuming
that nonreinforced objects in the Correlated condition become
inhibitory, leading pigeons to avoid pecking at them. The tendency
to avoid pecking would then generalize to stimuli in the Uncorre-
lated condition, if these stimuli are perceptually similar to the di-
rectly nonreinforced stimuli. Thus, generalization of inhibition
could promote the concentration of pecks outside the objects in
the Uncorrelated condition. However, because the reinforced stim-
uli and the nonreinforced stimuli in the Correlated condition are
views of the same object, similarity-based generalization should
be stronger in this case than with any stimuli in the Uncorrelated
condition, which are views of a completely different object. So,
generalization of inhibition should produce more pecks outside
the reinforced objects in the Correlated condition than in the
Uncorrelated condition. But, the just opposite was found: more
pecks were allocated to the object in the Correlated condition than
in the Uncorrelated condition. This finding suggests that what
birds learn in this task is more complex than simply pecking indis-
criminately at all stimuli except those that have become inhibitory
by direct training or generalization.
3. Experiment 2

In Pavlovian learning, conditioning to one stimulus is attenu-
ated when it is presented in conjunction with a second stimulus
that reliably predicts reinforcement, an effect that Pavlov called
‘‘overshadowing’’ (Pavlov, 1927). The size of this effect depends
on the relative salience of the two stimuli, with a more salient
component overshadowing a less salient component (Mackintosh,
1976).

An error-driven learning algorithm explains overshadowing as
the result of both stimuli acquiring associative strength throughout
training until, together, they perfectly predict reinforcement. At
that point, learning stops for both stimuli. Thus, each stimulus only
acquires part of the total response tendency that it would have ac-
quired if it had been individually paired with reinforcement. The
more salient component tends to acquire more associative
strength because higher saliency supports a higher learning rate.

As reviewed in Section 1, training with multiple views of an
object leads to view-invariance learning in pigeons. However, if
view invariance is learned through reward prediction error, then
this form of learning can be impaired, even if birds are trained with
multiple views of an object. One way to do so is to arrange training
conditions in which, together with view-invariant properties,



Fig. 6. Examples of the types of stimuli that were used in Experiment 2.
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different stimulus properties are repeatedly presented across
changes in viewpoint that are also informative as to the response
leading to reward on each trial.

The Common Elements Model does not give any special status
to view-invariant properties over other image properties, beyond
the fact that they get repeated often during multiple-views train-
ing. According to the model, if any properties tend to be common
to many of the training views, then these properties should acquire
control over behavior even if they are view-specific. These com-
mon properties should block control of behavior by view-invariant
properties, thereby producing an overshadowing effect. The size of
the overshadowing effect would depend on such factors as the rel-
ative salience of each set of properties and their informative value
as to the correct response. If view-specific properties are made
especially salient, then view-invariance learning might even be
reversed.

The goal of Experiment 2 was to test the hypothesis that any
stimulus properties that are common to several training views of
an object, including view-specific properties, will acquire control
over pigeons’ behavior. Pigeons were trained in two conditions—
Overshadowing and Control—each involving the presentation of
10 different views of two objects. One of these objects was shown
at viewpoints from which its main axis appeared vertical in the im-
age plane, as exemplified by the renderings of Geon 1 in Fig. 6 la-
beled ‘‘Training Images.’’ The other object was shown at viewpoints
from which its main axis appeared horizontal in the image plane,
as exemplified by the renderings of Geon 2 in Fig. 6 labeled ‘‘Train-
ing Images.’’

As can be seen from Fig. 6, the main difference between the
geons included in the Overshadowing and Control conditions was
the length of the geon’s main axis. The Overshadowing condition
included geons with a long main axis, whereas the Control condi-
tion included geons with a short main axis. Note that, in both con-
ditions, the geons can be discriminated on the basis of several
properties which are invariant across changes in viewpoint, such
as edge parallelism and shape of the cross-section. The geons can
also be discriminated on the basis of properties that are variable
across changes in viewpoint, such as the orientation of the main
axis. A metric which correlates with the orientation of the main
axis is the two-dimensional aspect ratio of the object, defined as
the width-to-height ratio of the smallest rectangle that can enclose
an object (Biederman, 1987). The main difference between the con-
ditions lies in the salience of this metric property. In the Overshad-
owing condition, the long main axes produce very large differences
between the geons in aspect ratio, whereas in the Control condi-
tion, the short main axes produce smaller differences in aspect
ratio.

Although the geons in Fig. 6 can be categorized on the basis of
very different properties, which property is actually used has con-
sequences for how well the object will be recognized from novel
viewpoints. Properties such as edge parallelism and shape of the
cross-section provide information about the three-dimensional
structure of the geons, permitting them to be identified from
new viewpoints. Properties such as aspect ratio, however, do not
provide any information about the three-dimensional structure
of the geons and do not permit them to be identified from novel
viewpoints.

According to the Common Elements Model, both types of prop-
erties should come to control behavior during training. How
quickly the birds learn about each property depends on such fac-
tors as how salient the differences are between geons along that
particular dimension. The difference between geons in aspect ratio
is much more salient in the Overshadowing condition than in the
Control condition. Thus, aspect ratio should come to control behav-
ior more rapidly during training in the Overshadowing condition,
as well as block control by view-invariant properties. In the Control
condition, aspect ratio should gain less control over behavior, lead-
ing to greater control by view-invariant properties.

The level of control that is acquired by each stimulus property
can be assessed by testing with novel views of the training objects
(‘‘Testing Images’’ in Fig. 6). The testing image of each geon has an
aspect ratio which is the opposite of the aspect ratio that was
shown by the geons’ training images. If the pigeons learned to sort
the images based on properties such as edge parallelism and shape
of the cross-section, then they should correctly identify each object
from new viewpoints during the test, exhibiting the same view-
invariant behavior previously demonstrated by pigeons trained
with multiple views of geons. If, on the other hand, the pigeons
learned to sort the images based on their aspect ratio, then they
should incorrectly classify the testing images. The birds ought to re-
spond to the new image of Geon 1 with the choice response that
was assigned to Geon 2 during training, and they ought to respond
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to the new image of Geon 2 with the choice response that was as-
signed to Geon 1 during training.
3.1. Method

3.1.1. Subjects and apparatus
The subjects were five feral pigeons (C. livia) kept at 85% of their

free-feeding weights. The apparatus was the same as that de-
scribed in Experiment 1.
3.1.2. Stimuli
The stimuli were renderings of four three-dimensional objects

(‘‘geons’’). Object models were created using Blender 2.49 (The
Blender Foundation; www.blender.org). They were built by swip-
ing four different cross-sections (kidney-shaped, square, circle,
and triangle) along a straight main axis, and with the size of the
cross-section changing across the main axis in four different ways
(constant, contract and expand, expand and contract, expand).

Two versions of each geon were created, one with a short main
axis and one with a long main axis (see Fig. 6). The long-axis ver-
sion of each geon had a main axis that was five times longer than
the short-axis version of the same geon. For both versions, the
length of the main axis was the same across geons and the main
axis was always straight. The size of the cross-section, measured
by the size of the smallest rectangle that could enclose it, was also
the same for all geons. Finally, the length of the main axis was
greater than the width of both the short- and the long-axis ver-
sions of each geon. The main difference between versions was met-
ric: namely, how much longer the main axis of the geon was
compared to its cross-section.

Two-dimensional renderings were generated by placing a cam-
era in front and slightly above the object. Two environmental lights
illuminated the object: one positioned in front of the object and be-
low the camera, the other positioned at the top-left of the object.
The objects were rotated on their internal axes and rendered on
a white background with a size of 256 � 256 pixels. For each ob-
ject, 49 views were rendered in which the object’s main axis was
horizontally oriented and 54 views were rendered in which the ob-
ject’s main axis was vertically oriented.

From this final pool of stimuli, 10 training views were selected
by the experimenter. The training views showed the object’s main
axis horizontally oriented for Geons 1 and 3 and vertically oriented
for Geons 2 and 4. Stimulus sets were grouped by geon. Geons 1
and 2, which differed in a number of structural properties (edge
curvature, symmetry of cross-section, tapering of cross-section
along main axis) and in the orientation of their main axis, were
always grouped together and assigned to the same experimental
condition. The same was true for Geons 3 and 4. Thus, the stimuli
in both discriminations were highly discriminable on the basis of
their structural properties and aspect ratio. The assignment of each
pair of geons to the two conditions was counterbalanced across
pigeons.

The orientation of the main axis for testing views was the oppo-
site of the orientation of the training views. The selection of testing
stimuli was carried out in a three-step process.

First, the pixel-by-pixel dissimilarity in luminosity between the
candidate testing stimuli and the training stimuli was computed,
with adjustment of position. For a pair of images, the position of
the object within one of the displays was shifted several times;
each time, the Euclidean distance between the pixel luminosity
values of the images was calculated. This dissimilarity measure
was computed at each of 10,201 positions and the minimum dis-
similarity was kept as the final measure. The large number of posi-
tions was the result of the combination of the original position plus
50 translations in upward, downward, leftward, and rightward
directions. Translations were done in steps of 2 pixels to reduce
computing time.

Second, each testing image was classified as generated by a par-
ticular object, according to two criteria: (1) the object with the
lowest dissimilarity between a single training image and the test-
ing image, or (2) the object with the lowest mean dissimilarity be-
tween all training images and the testing image.

Third, views which were classified in the same way for both the
short-axis and the long-axis versions of the object were retained as
candidates. From this smaller pool of views, testing views were se-
lected by the experimenter. This selection of testing views ensured
that the predicted results could not be explained by the pattern of
physical similarity among images.
3.1.3. Procedure
Each pigeon was concurrently trained on both conditions. Four

keys (black-and-white icons) were used, each positioned next to
one corner of the stimulus. Each condition was trained using a dif-
ferent pair of response keys in a two-alternative forced-choice task
(either the two top response keys or the two bottom response
keys). The assignment of conditions to pairs of response keys
was counterbalanced across pigeons.

The assignment of object pairs to the two conditions was coun-
terbalanced across pigeons. The assignment of objects to response
keys was partially counterbalanced, taking care that objects with
training views which had the same main axis orientation were as-
signed to opposite left–right positions on the screen, to prevent the
pigeons from learning to respond to one side of the screen when-
ever an object with a particular orientation was shown.

The stimuli were displayed on a 7.5- � 7.5-cm screen posi-
tioned in the middle of the monitor. A trial began with the pigeon
being shown a black cross in the center of a white screen. After one
peck to the display, an image was shown. The bird had to peck the
stimulus a number of times (from 5 to 45, depending on the pi-
geon’s performance); then, a pair of response keys was shown
and the pigeon was required to peck one in order to advance the
trial. If the pigeon’s choice was correct, then food was delivered
and an intertrial interval followed. If the pigeon’s choice was incor-
rect, then the house light and the monitor screen darkened and a
correction trial followed after a timeout ranging from 5 to 30 s
(again, depending on the pigeon’s performance). Correction trials
continued to be given until the correct response was made. Only
the first report response of each trial was scored in data analysis.
Reinforcement consisted of 1–3 food pellets.

Training sessions consisted of four blocks of 40 trials. Each block
consisted on one presentation of each of the training stimuli. Trials
were randomized within blocks during this and the following
phases. Training continued until the bird met the criterion of 85%
accuracy on each of the four response keys; then, a testing session
followed.

Testing sessions consisted of 1 warm-up block of 40 training tri-
als plus 1 testing block with 120 trials, for a total of 160 trials per
session. The testing block included a single presentation of each of
the testing stimuli plus 2 repetitions of each training trial. All pre-
sentations of the novel testing stimuli were nondifferentially rein-
forced. Pigeons continued to be tested as long as they met criterion
on the training trials; otherwise, birds were returned to training
until criterion was again attained. Each pigeon completed 10 full
testing sessions.
3.2. Results and discussion

It took the birds a mean of 15.6 training sessions to reach crite-
rion for testing, with individual values ranging from 8 to 23
sessions.

http://www.blender.org


Fig. 7. Results of the generalization test of Experiment 2.
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Fig. 7 shows the mean proportion of correct choices to testing
stimuli in the Control (gray column) and Overshadowing (white
column) conditions. Chance performance was 0.5. It can clearly
be seen that the pattern of generalization was reversed in the
two conditions. Pigeons showed above-chance performance with
novel stimuli in the Control condition (M = .73, SD = 0.21). A one-
sample t-test indicated that the mean proportion of correct choices
in the Control condition was significantly above chance, t(4) = 2.50,
p < 0.05. This outcome confirms previous findings indicating that
multiple-views training leads to generalization of performance to
novel views of the training objects. On the other hand, pigeons
showed below-chance performance with novel stimuli in the Over-
shadowing condition. A one-sample t-test revealed that the mean
proportion of correct choices in the Overshadowing condition
was significantly below chance, t(4) = 8.69, p < 0.001. This outcome
indicates that what came to control performance in the Overshad-
owing condition was the orientation of the object’s main axis in
the image plane, leading the pigeons to misclassify testing views
of the objects in which the orientation of their main axis was
rotated. A paired-samples t-test revealed that the difference be-
tween the Control and Overshadowing conditions was significant,
t(4) = 5.82, p < 0.01.

These results suggest that, as predicted by the Common Ele-
ments Model, any stimulus properties which are frequently re-
peated during training with multiple views of an object can
acquire control of performance. Usually, properties that enjoy this
repetition advantage are view-invariant properties, which are use-
ful to infer the three-dimensional identity of a particular object.
However, if conditions are arranged so that both view-invariant
and view-specific properties are both frequently repeated across
training views and are both informative as to the correct response
in a recognition task, then view-invariant properties may not show
a selective advantage. In some circumstances, view-specific prop-
erties can completely overshadow view-invariant properties, lead-
ing to no learning about the identity of the training objects.

Importantly, the results of this experiment cannot be explained
in terms of the pattern of image similarities presented in the reti-
nal input. As described in Section 3.1.3, the stimuli were created to
explicitly control for this possibility.
4. General discussion

In the present work, two experiments were reported suggesting
that associative error-driven learning is involved in pigeons’ recog-
nition of objects across changes in viewpoint. Experiment 1 found
that recognition of an object across changes in viewpoint depends
on how well each individual view predicts reward. If reward is well
predicted by individual object views, then invariance learning is
reduced compared to a condition in which object views are not
predictive of reward. This pattern of results is analogous to the rel-
ative validity effect in associative learning, a conclusion that was
strengthened by analysis of peck location and learning curves,
which also exhibited response patterns similar to those found in
prior Pavlovian conditioning studies. Experiment 2 found that
view-specific and view-invariant object properties compete for
control of behavior in object identification. Which properties con-
trol performance after training depends on such factors as their
saliency and how well they predict reward. We found that, given
the right circumstances, training with multiple views of an object
results in view-dependent object recognition. This pattern of re-
sults is analogous to the overshadowing effect first reported in
associative learning experiments.

Our explanation of view-invariance learning by pigeons is pred-
icated on the assumption that their visual system is capable of
extracting both view-invariant and view-specific object properties
from retinal images. As discussed in Section 1, the available behav-
ioral evidence accords with this assumption. But, an important
question remains unanswered: How does the avian visual system
build such a representation?

Current thinking suggests that the selectivity and invariance of
neurons, at least in the primate visual system, are learned across
development through unsupervised exposure to natural images.
Several learning algorithms have been proposed that can achieve
invariance learning (e.g., Foldiák, 1991; Stringer et al., 2006;
Wiskott & Sejnowski, 2002), most of them based on the same gen-
eral idea: objects in the world tend to remain present for several
seconds, but changes in the position of the object and the viewer
lead to drastic changes in the images that they project to the retina.
Thus, object changes in the real world happen at a slower temporal
scale than image changes in the retina. The brain may take advan-
tage of this fact and learn view-invariant object properties from
different retinal images that are presented in close temporal
contiguity.

Some evidence supports the view that the selectivity of neurons
in the primate ventral stream is learned through such unsuper-
vised learning algorithms (Li & DiCarlo, 2008, 2010). However, an
interesting possibility is that error-driven learning might play a
role in the learning of visual features and not just their selection
for performance in specific tasks. Changes in selectivity of visual
neurons during perceptual learning has been explained as the re-
sult of error-driven learning of representations (Roelfsema & van
Ooyen, 2005; Roelfsema, van Ooyen, & Watanabe, 2010). Impor-
tantly, the evidence that has been offered in support of unsuper-
vised learning of selectivity and invariance in the primate visual
system does not completely eliminate a role for reward prediction
error during such learning. This point is explicitly acknowledged
by Li and DiCarlo (2010), who note that their data ‘‘do not rule
out the possibility that [. . .] top down signals may be required to
mediate [. . .] learning. [. . .] These potential top-down signals could
include nonspecific reward, attentional, and arousal signals (p.
1073).’’ The availability of such top-down signals could also ex-
plain the results of other monkey studies, which suggest that ob-
ject discrimination can lead to view-invariance learning in the
absence of experience with temporal pairings of object views
(Wang et al., 2005; Yamashita, Wang, & Tanaka, 2010).

Learning schemes that can achieve invariance gradually
through experience with an object leave open the question as to
how invariance is achieved without explicitly experiencing varia-
tions in an irrelevant object dimension—the puzzle of initial invari-
ance (Leibo et al., 2010). Such initial invariance, which has been
found in people with both natural and artificial objects (e.g., Bie-
derman & Gerhardstein, 1993), could have important value for
the adaptation of any species.
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One way in which initial invariance can be increased is through
the hierarchical processing of visual information (Leibo et al., 2010;
Ullman, 2007). In such a framework, object recognition occurs
through several stages of visual information processing, with each
stage computing a more complex object representation from in-
puts coming from the previous stage. For example, one stage might
extract from the image a number of object parts, whereas the next
stage might integrate them into the representation of a whole ob-
ject. Within this scheme, invariant recognition of a new object can
be achieved through invariant recognition of its components. If
training with one object leads to invariant representations of its
components, then this learning would generalize to the recognition
of any new objects which also share those components. Objects
from the same natural class, which are very likely to share compo-
nents, are particularly prone to entail this form of generalized
invariance. Although the learning of invariant components is
generally implemented through unsupervised mechanisms in
hierarchical models, an alternative is that the learning of represen-
tations throughout the visual system is gated by a prediction error
signal.

Another possibility is that, from all of the visual properties that
can be extracted from a single view of an object, the visual system
might preferentially process those that are more likely to be re-
peated from new viewpoints. This selective processing would lead
to better performance with novel views of the object than if all of
the properties in the original training view were processed to the
same extent. Error-driven learning could also play a role in this
case. Through experience with many objects, the system could
learn to selectively attend to those features that are most
diagnostic as to the object’s identity across several irrelevant
transformations.

If there is a role for prediction error in attentional learning or
the learning of visual representations, then the Common Elements
Model could be modified in many ways to provide a better account
of invariance learning. The assumptions of the model concerning
the conditions that produce learning (i.e., reward prediction error)
are independent of its assumptions about the contents of such
learning (e.g., associations with responses, object and feature rep-
resentations, or selective attention).

Another challenge for any model relying on learning through re-
ward prediction error is that object recognition in the natural envi-
ronment often does not involve situations in which explicit
rewards are presented. However, any neutral stimulus can acquire
motivational value via Pavlovian conditioning (for a review, see
Williams, 1994), thereby becoming rewarding. Furthermore, the
same brain substrates that code for reward prediction errors also
code for information prediction errors; that is, whether or not sur-
prising information about a possible reward has been presented
(Bromberg-Martin & Hikosaka, 2009). Thus, learning through pre-
diction error does not require the presentation of an explicit
reward.

An important question regarding object representations is to
what extent the representation assumed by the Common Elements
Model is related to the representations proposed by structural-
description and image-based theories of human object recognition.
Structural-description theories (e.g., Biederman, 1987; Marr &
Nishihara, 1978) propose that objects are represented as a set of
three-dimensional volumetric parts (e.g., a cylinder, a cube, etc.)
and their spatial relations. That is, information about the three-
dimensional structure of objects is explicitly extracted from
images and represented by the visual system. Such extraction of
information would be possible thanks to the identification of the
volumetric components of an object; edge properties in the two-
dimensional image that these volumes project to the retina are
likely to arise from similar features in the edges of three-
dimensional objects (see Biederman, 1987). On the other hand,
image-based models (e.g., Poggio & Edelman, 1990; Tarr & Pinker,
1989; Ullman, 1989) propose that objects are represented as a set
of view-dependent images which are stored in memory. These
images could be complete templates of a specific view of an object,
the metric coordinates of constituent points of the object, or collec-
tions of two-dimensional image features. Thus, the stored repre-
sentation of an object would involve two-dimensional image
information acquired through experience, instead of the three-
dimensional structure that is proposed by structural-description
models.

The Common Elements Model describes the conditions that
lead to view-invariance learning, while making minimal assump-
tions about stimulus representation. Thus, the model does not
commit to the kind of representation proposed by either struc-
tural-description or image-based models. It only assumes a distrib-
uted representation involving object properties with varying levels
of invariance across changes in viewpoint. What we have called
‘‘view-invariant’’ properties here can be any properties that are
common to many views of an object, which is likely to include
properties of the three-dimensional structure of an object, but also
two-dimensional image features. Previous research has shown that
pigeons rely heavily on three-dimensional shape features to
recognize simple geons like those used here (Gibson et al., 2007;
Lazareva, Wasserman, & Biederman, 2008). However, it might be
the case that such features are not available for the recognition
of other objects. In that case, two-dimensional image features that
are common to adjacent views might play a more important role.
Importantly, the model proposes that, regardless of the view-
invariant and view-specific properties in a particular set of images,
the learning principles by which these properties are selected for
performance in a task are always the same.

Here, we have made a distinction between view-invariant and
view-specific elements without a more fine-grained distinction
involving the degree to which different views of an object share
common properties. For example, it could be assumed that the
number of properties that are common to two object views in-
creases proportionally to how close they are in terms of rotation.
We believe that the validity of this assumption is not guaranteed.
There is no reason to think that the distances along the dimension
used to create a number of stimuli must be perfectly correlated
with the dissimilarities as perceived by the birds. Thus, the Com-
mon Elements Model only assumes that views from the same ob-
ject (or category) are more likely to share common properties
than views from different objects. One way in which it might be
possible to study graded differences in similarity would be to infer
featural representations for individual stimuli from independent
data using additive clustering (Navarro & Griffiths, 2008; Shepard
& Arabie, 1979), and then using the inferred representations to
make more fine-grained predictions about learning and generaliza-
tion. Although we believe that this is a very promising possibility,
it is beyond the scope of the present study.

An important open question is to what extent error-driven
learning might play a role in pigeons’ learning to recognize objects
across transformations other than viewpoint, such as size and po-
sition. Object recognition which is invariant across changes in
viewpoint is considered to be a more difficult computational prob-
lem than invariance across changes in size and position (Palmeri &
Gauthier, 2004; Riesenhuber & Poggio, 2000; Ullman, 1989).
However, behavioral evidence from studies with pigeons suggests
that their recognition of objects varying in size and translation is
similar to their recognition of objects varying in viewpoint.

Several studies have tested pigeons’ recognition of objects vary-
ing in size (e.g., Peissig et al., 2006; Pisacreta, Potter, & Lefave,
1984). The general conclusion from these studies is that pigeons
show generalization of performance to familiar objects presented
at novel sizes. Nevertheless, pigeons also show a decrement in
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accuracy to novel sizes compared to the original size. Regarding
translation, there is evidence that pigeons generalize their recogni-
tion performance only modestly to novel positions on a display
screen after training with a single, central position; however, if
the birds receive training with as few as four different positions
of the object, then they show complete invariance when the object
is presented in new positions (Kirkpatrick, 2001).

Thus, the Common Elements Model might offer a good explana-
tion of birds’ recognition of objects across a number of different
image transformation, not only viewpoint. Furthermore, we have
found (Soto & Wasserman, in preparation) that experience with
several affine transformations (scaling, shear, and planar rotation)
of a single object view improves view-invariant recognition in pi-
geons; that is, it improves recognition across a non-affine transfor-
mation (rotation in depth), implicating common processing
mechanisms for both types of transformation. At least for birds,
the distinction between affine and non-affine transformations
seems not to be a basic one, as proposed by some theories of object
recognition in primates (Riesenhuber & Poggio, 2000). Thus, it is
likely that the results of the present experiments will generalize
to learning of invariance along other relevant object dimensions,
such as size and translation.

A final question is to what extent the results found with birds
might tell us something about visual object recognition in other
species, particularly people and other primates. Several experi-
mental results suggest that birds and primates use different mech-
anisms for invariant object recognition. For example, people
sometimes exhibit view-invariant recognition when they are
tested with the appropriate stimuli (Biederman & Gerhardstein,
1993), whereas pigeons show view-dependent recognition regard-
less of the type of stimulus with which they are tested (Cerella,
1977; Lumsden, 1977; Peissig et al., 1999, 2000; Spetch, Friedman,
& Reid, 2001; Wasserman et al., 1996). Also, people, but not pi-
geons, show view-invariant recognition of novel views of an object
which are interpolated between experienced views (Spetch &
Friedman, 2003) and show view-invariant recognition of bent-
paperclip objects when a geon has been added to them (Spetch,
Friedman, & Reid, 2001).

All of these disparities in behavior suggest that there may be a
difference between species in the mechanisms that support view-
invariant object recognition. However, recent work with a compu-
tational model of object recognition indicates that pigeons’ behav-
ior in object recognition tasks is consistent with the principles of
visual shape processing discovered in the primate brain (Soto &
Wasserman, 2012). Although there may surely be adaptive special-
izations involved in object recognition by birds and primates, it
seems likely that pigeons, people, and other vertebrates share
some basic principles of visual representation and associative
learning.

It is becoming increasingly accepted among researchers that ob-
ject categorization in primates results from a two-stage process
(e.g., De Baene et al., 2008; DiCarlo & Cox, 2007; Serre et al.,
2005), in which high-level visual representations are generated
by the visual system and other areas in the brain readout this
information to produce category representations and adequate
motor responses. What is known about shape processing and
representation in the primate brain agrees with the idea that the
primate visual system extracts properties with varied levels of
view invariance from retinal images, giving origin to a sparse,
distributed object representation.

A recent study (Zoccolan et al., 2007) disclosed that both object
selectivity and invariance across image transformations range
widely in a population of inferotemporal neurons. Although single
neurons in high visual areas do not seem to achieve complete
invariance, whole populations of neurons can support invariant
recognition through readout mechanisms (Leibo et al., 2010).
Indeed, it has been found that, if the response of a small population
of inferotemporal neurons is used to train a linear classifier in an
object recognition task, then the classifier can show invariant rec-
ognition across position, scale, and clutter (Hung et al., 2005; Li
et al., 2009). However, these linear classifiers can read object iden-
tity across changes in image transformations only because they are
explicitly trained with irrelevant variations across such dimensions
(Goris & Op de Beeck, 2009, 2010).

The present work fits nicely into this picture, because it shows
that error-driven associative learning is a good candidate for learn-
ing how to readout the representations that are generated by the
visual system and potentially modify those representations to fit
the demands of environmental tasks. The learning mechanism that
is proposed by the Common Elements Model provides a similar re-
sult to the linear classifiers that have been used in the literature,
such as support vector machines and Fisher discriminant analysis
(Hung et al., 2005; Li et al., 2009), but with the advantage of being
more biologically and evolutionarily plausible. There is evidence
that prediction errors are computed in the brains of vertebrates,
that they can drive categorization learning in the basal ganglia
and other brain areas, and that many of the structures that are in-
volved are homologous in all vertebrates (for a review, see Soto &
Wasserman, 2012).

A ‘‘general processes’’ approach to comparative cognition sug-
gests that some basic mechanisms of learning and visual percep-
tion, which are known to be present in primates, pigeons, and
other vertebrates, are likely to play a role in view-invariance learn-
ing across all of these taxa. Although only further comparative re-
search can give a definitive answer, the results presented here
suggest that such general processes might play an important role
in view-invariance learning by birds.
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