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In both his learning texts, The Psychology of Animal 
Learning (1974) and Conditioning and Associative Learning 
(1983), Nicholas Mackintosh argues that common associa-
tive learning processes underlie Pavlovian and instrumental 
conditioning on the basis of the empirical commonalties 
between the different forms of learning. For example, in a 
series of experiments, Wagner demonstrated that when a tar-
get cue is trained in compound with another stimulus, the 
amount of conditioning accruing to the target depends upon 
its validity as a predictor of the reinforcer relative to the 
other stimulus (Wagner, 1969; Wagner, Logan, & 
Haberlandt, 1968). Mackintosh then notes that instrumental 
conditioning of wheel running shows comparable sensitiv-
ity to the relative validity of this response as a predictor of a 
food reinforcer (Mackintosh & Dickinson, 1979).

The effect of relative validity in Pavlovian conditioning 
is most readily explained by associative theories that 
deploy a prediction error to modulate learning (Mackintosh, 
1975; Rescorla & Wagner, 1972; for a review, see Vogel, 
Castro, & Saavedra, 2004). At the core of all such theories 

is the claim that the net associative strength of a stimulus 
normally increases when it is paired with a reinforcer and 
normally decreases when it is presented in the absence of 
the reinforcer. As a consequence, a primary determinant of 
conditioning is the probability of reinforcement, a factor 
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Abstract
Associative learning theories regard the probability of reinforcement as the critical factor determining responding. 
However, the role of this factor in instrumental conditioning is not completely clear. In fact, free-operant experiments 
show that participants respond at a higher rate on variable ratio than on variable interval schedules even though the 
reinforcement probability is matched between the schedules. This difference has been attributed to the differential 
reinforcement of long inter-response times (IRTs) by interval schedules, which acts to slow responding. In the present 
study, we used a novel experimental design to investigate human responding under random ratio (RR) and regulated 
probability interval (RPI) schedules, a type of interval schedule that sets a reinforcement probability independently of 
the IRT duration. Participants responded on each type of schedule before a final choice test in which they distributed 
responding between two schedules similar to those experienced during training. Although response rates did not differ 
during training, the participants responded at a lower rate on the RPI schedule than on the matched RR schedule during 
the choice test. This preference cannot be attributed to a higher probability of reinforcement for long IRTs and questions 
the idea that similar associative processes underlie classical and instrumental conditioning.
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that raises a potential problem for the application of such 
associative theories to instrumental conditioning.

The problem arises from the contrast between different 
schedules of instrumental reinforcement. On variable ratio 
(VR) schedules, reinforcers are delivered after the agent 
performs a certain number of responses, whereas on varia-
ble interval (VI) schedules these are delivered for the first 
response made after a certain period of time has elapsed 
since the last reinforcer. The required interval or number of 
responses vary after each reinforcement around a pre-deter-
mined average. For example, a VR10 schedule will return a 
reinforcer, on average, after every 10 responses; a VI10 
schedule will reward the first response made after, on aver-
age, 10 s since the last reinforced response. These schedules 
are thought to model, respectively, the non-depleting and 
depleting and regenerating resources that animals may find 
in their natural environments (Dickinson, 1994). The ideal-
ized versions of these two schedules are the random ratio 
(RR) and random interval (RI) schedules, where the proba-
bility of reinforcement per response—in the ratio case—and 
the probability of a reinforcer becoming available per sec-
ond—in the interval case—are given by binomial (or geo-
metric) distribution (see Cardinal & Aitken, 2010). Using a 
variety of species and target instrumental responses, a 
wealth of evidence has shown that ratio schedules support 
higher response rates than interval schedules despite the 
probability of reinforcement or the reinforcement rate being 
matched (Bradshaw, Freegard, & Reed, 2015; Bradshaw & 
Reed, 2012; Catania, Matthews, Silverman, & Yohalem, 
1977; Dawson & Dickinson, 1990; Peele, Casey, & 
Silberberg, 1984; Reed, 2001a, 2001c; Zuriff, 1970).

Mackintosh (1974) was fully aware of the ratio–interval 
contrast and discussed whether ratio and interval sched-
ules differentially reinforce divergent response rates—that 
is, whether different response rates bring about different 
reinforcement probabilities on ratio and interval sched-
ules. While dismissing the misconception that VR sched-
ules differentially reinforce high rates of responding, he 
notes that, unlike ratio schedules, interval schedules dif-
ferentially reinforce long inter-response times (IRTs), or 
the pause between responses. On an interval schedule, the 
longer that an agent waits before responding again, the 
more likely it is that a reward will have become available. 
This contingency implies that long IRTs will be correlated 
with higher probabilities of reinforcement for the next 
response. Because the reinforcement probability on VR 
schedules does not vary with IRT size, it follows that 
agents should emit longer IRTs, or pauses between 
responses, on VI schedules and therefore respond less 
often than on a VR schedule. Thus, by focusing on the 
temporal control of responding under interval contingen-
cies, Mackintosh’s argument retains the probability of 
reinforcement as the cardinal determinant of responding.

Kuch and Platt (1976) proposed a schedule for evaluat-
ing the role of the differential reinforcement of long IRTs 

while retaining the relative independence of response rates 
and reinforcement rates characteristic of interval sched-
ules. The regulated probability interval (RPI) schedule sets 
a probability of reinforcement for each response that will 
generate an average inter-reinforcement interval that 
matches the schedule parameter if the agent continues to 
respond at the current rate. This regulated probability is 
calculated as P = t/Tm, where t denotes the time it took the 
subject to perform the last m responses, and T is the sched-
uled inter-reinforcement interval. The equation can be also 
written as P = 1/Tbm, where bm can be regarded as the local 
response rate during the memory size m. Therefore, if the 
agent decreases bm from a particular level, the probability 
of reinforcement will adjust—increasing in this case—so 
that the reward is delivered on average after a pre-set inter-
val, thereby keeping the reinforcement rate constant at 1/T 
rewards per second. Suppose, for example, that m = 10, 
and the interval between reinforcers that the experimenter 
aims to achieve is 10 s (T = 10). Moreover, assume that the 
participant has performed 20 responses in the last 10 s, so 
that t = 5. Then the reinforcement probability for the next 
response will be 5/(10 × 10) = .05; at this rate, one every 
20 responses on average will be rewarded. Because, on 
average, it takes the subject 10 s to perform 20 responses, 
then with a reinforcement probability of one in 20 (.05) the 
average interval between reinforcers will be 10 s. Suppose 
now that the agent responds less vigorously, so that it took 
10 s to perform the last 10 responses (t = 10). Then the 
reinforcement probability will be 10/(10 × 10) = .1; at this 
new rate, 1 out of 10 responses on average will be rewarded. 
Since it takes the agent 10 s to perform them, the interval 
between reinforcers will be again 10 s.

The previous example shows that, in contrast with RI 
schedules, in the RPI schedule the reinforcement probabil-
ity is fixed prior to the emission of a response so that it 
does not vary with the duration of the preceding IRT, but 
rather depends on a set of IRTs given by the memory size 
m. As a result, the RPI prevents the differential reinforce-
ment of any particular IRT size while maintaining the pre-
set average inter-reinforcement interval. Thus, if 
probabilities of reinforcement are matched, associative 
theories predict similar levels of responding for VR and 
RPI schedules.

Only a few studies have investigated the VR-RPI con-
trast. Dawson and Dickinson (1990) compared responding 
on VR, VI, and RPI schedules with triads of rats when the 
reinforcement rate of the interval schedules was matched 
to that generated by the ratio schedule by yoking within 
each triad. The fact that the rats responded more slowly on 
the VI than on the RPI schedule suggests that the differen-
tial reinforcement of long IRTs does slow responding 
under an interval contingency, whereas the higher response 
rate on the VR than on the RPI schedule indicates that this 
factor cannot be the sole cause of the ratio–interval differ-
ence. More recently, Tanno and Sakagami (2008) observed 



Pérez et al.	 3

similar response rates when rats responded on VR and RPI 
schedules. However, in a further study with human partici-
pants, Tanno (2008) replicated the ordering of response 
rates observed by Dawson and Dickinson (1990)—
although the critical contrast between the VR and RPI per-
formance did not reach the standard criterion of statistical 
significance. Given the theoretical importance of this con-
trast, we re-examined human instrumental performance on 
VR and RPI schedules.

To this end, we matched the probability of reinforce-
ment across RPI and RR schedules by yoking the value 
generated by performance on a master RPI schedule to that 
programmed by the RR contingency on both a within-par-
ticipant and a between-participant basis. In addition, we 
trained some of the participants on an RPI schedule that 
programmed an average inter-reinforcement interval that 
matched the interval generated by their prior performance 
on an RR schedule. Following this training on the single 
RPI and RR schedules, we gave a choice between respond-
ing on the two types of schedules. If, as anticipated by 
associative theories, the probability of reinforcement is the 
primary determinant of responding, the participants should 
have responded at similar rates on the RR as on the RPI 
schedule in this choice test.

Experimental study

Method

Participants.  Forty-five undergraduates from the Univer-
sity of Cambridge, who were naïve to the experimental 
procedure, participated in the experiment and gave 
informed consent. They were randomly assigned to one of 
four groups and were paid £3 plus a chocolate bar for their 
participation.

Apparatus.  Participants were tested individually inside one 
of two testing rooms and were presented with the task on a 

laptop (15.4″ Acer Aspire 5930 or 15.4″ Asus K52J) run-
ning Windows 7. The experiment was programmed using 
Microsoft Visual Studio 2008. To prevent participants 
from being distracted by outside noise, all of them were 
asked to wear headphones during the task.

Design.  There were four groups and two stages: training 
followed by the choice tests. As represented in the rows of 
Table 1, training started with a sequence of four 3-min tri-
als in each of which responding was reinforced on a differ-
ent schedule. For Group A1, training started with the 
master RPI 30-s schedule followed by training in the sec-
ond trial on a yoked RR schedule, designated as a RRy30 
schedule. For each participant, the mean probability of 
reinforcement generated by performance on the RPI 30-s 
schedule was used as the parameter for the RRy30, thereby 
yielding within-participant yoking of reinforcement prob-
ability. The next two training trials recapitulated this 
sequence with an RPI 10-s master schedule. This sequence 
was then repeated to generate a total of eight trials so that 
each schedule received a total of 6 min of training. The 
purpose of training on the RPI 10-s schedule was to yield 
a yoked RRy10 schedule with a higher reinforcement 
probability than that for the yoked RRy30 so that we could 
verify that performance on our task was sensitive to this 
well-established determinant of instrumental responding. 
To this end, the first 3-min choice test trial offered a choice 
between responding on the RRy10 and RRy30 schedules. 
If performance on this task is sensitive to reinforcement 
probability, the RRy10 schedule should have attracted 
more responding. Finally, the critical test offered a choice 
between the RPI 30-s and RRy30 schedules for partici-
pants in A1 or A2 groups.

Each participant in Group B1 was paired with a master 
participant in Group A1 so that, through between-participant 
yoking, the performance of the master on the RPI 30-s sched-
ule set the probability of reinforcement scheduled by the ini-
tial RRy30 schedule received by the yoked B1 participant. 

Table 1.  Design of the experiment.

Note: RPI = regulated probability interval; RR = random ratio. Black arrows represent within-participant yoking; grey arrows represent between-
participant yoking. The numerical schedule parameter for the master RPI schedules represents the average programmed inter-reinforcement interval 
in seconds. The schedule parameter y signifies that the parameter was determined by yoking, and the associated numerical parameter signifies the 
parameter of the master RPI schedule. Each presentation of each schedule was considered as a trial (training stage: Trials 1 to 8; choice stage: Trials 
9 and 10). Parameters for the schedules in the choice tests were assigned within subjects taking the average values experienced by each subject dur-
ing the previous training stage (see Method section).
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This participant was then trained on an RPIy30 schedule for 
which the parameter was the mean inter-reinforcement inter-
val generated by her prior performance on the RRy30 sched-
ule. The next two trials recapitulated this yoking procedure 
for the 10-s parameter. The two choice test trials were the 
same as those for Group A1 except that the final trial gave a 
choice between the RRy30 and RPIy30 schedules.

Finally, Groups A2 and B2 received the same training 
and testing as did Groups A1 and B1, respectively, except 
for the fact their participants were initially trained on the 
master RPI 10-s schedule and the associated yoked sched-
ules so that the order of training was counterbalanced 
across groups.

Procedure.  The scenario required as the response the inser-
tion of coin icons into dispensers in order to obtain M&M 
sweets as the reinforcer or outcome. Each schedule was 
associated with a different dispenser. Following the proce-
dure used in similar studies (Bradshaw et al., 2015; Brad-
shaw & Reed, 2012; Reed, 2001c), the participants were 
given written instructions with the following text below:

During your time today you will be using coins to invest into 
M&Ms dispensers. You will have the opportunity to use your 
coins in different M&Ms dispensers, but only one of them 
will be turned on at each time. At any time you may invest a 
coin on a dispenser by pressing the spacebar. If you receive a 
return on your coins, then you will get one M&Ms bag. The 
total number of candies you have won and your total coin 
credit will be displayed on the top of the screen so you can 
monitor your performance.

Your aim is to make the most profits, i.e., to get the most 
M&Ms with the fewest coins. In doing so, you will need to 
use your coins the best way you can. Due to the nature of the 
dispenser machines it is to your advantage to insert coins 
some of the time and not to insert coins at other times. You 
need to discover this by yourself.

You will be shown 4 dispenser machines, only one of which is 
active at a time. You have to select the active machine by 
clicking on it. To indicate that the machine is active, a hand 
holding a coin will be shown above the selected machine. To 
insert a coin in the active machine, press the spacebar. You 
may insert coins at any time. Every time a coin earns you a 
reward (M&Ms candy), you have to collect it by clicking on 
the “collect” image that will appear on the screen and then 
select the machine again to be able to insert coins again. The 
following screenshot explains the display you will see: (a 
screenshot of the task was presented)

Your performance will be recorded and ranked among the 
performance of other participants; the 3 participants who used 
their coins most efficiently (i.e., highest number of M&Ms 
collected with the fewest coins) will receive special rewards.

After it had been checked that participants understood 
the instructions, they started responding on the first 

training schedules assigned to their group, as outlined in 
the Design section. Four M&M dispensers were aligned in 
the lower part of the screen from left to right (see Figure 
1). The combination of the image of each machine and the 
position was randomized between subjects. The active 
schedule was signalled by a hand holding a coin on top of 
the dispenser; a banner in front of the other machines with 
the phrase “not in use” signalled that the other schedules 
were inactive. Upon completion of 3 min of training on the 
first schedule, the next schedule was activated, and the 
hand moved to its corresponding position. The banner now 
appeared in front of the previous dispenser. This process 
continued until the eight trials were completed.

In the upper part of the screen, the number of M&Ms 
obtained in the task and the number of coins spent were 
shown in the upper corners. In contrast to the majority of 
human studies using free-operant schedules (Bradshaw 
et  al., 2015; Bradshaw & Reed, 2012; McDowell & 
Wixted, 1986; Reed, 2001a, 2001b, 2001c), participants 
were not shown the number of credits remaining, but only 
the total number they had so far spent during the task. This 
display informed participants the overall number of 
responses performed, but no information about current 
performance was provided. Based on a previous pilot 
study, we thought that this procedure would encourage 
participants to maintain responding and not to consider 
stopping as a strategy for maximizing the amount of cred-
its obtained in the task.

We also added a collection procedure. To collect the 
M&M, participants were asked to click on the upper part 
of the screen where an image of an M&M bag appeared. 
They then had to return to the dispenser and click on it in 
order to activate it and start responding again. Every time 
a reward occurred, the timer for the task was paused and 
re-started only after the participant clicked on the M&M 
bag. The addition of this “consummatory” response was 
based on previous data suggesting that, under certain 

Figure 1.  A screenshot of the task as seen by participants. To 
view this figure in colour, please visit the online version of this 
Journal.
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conditions, this response might be necessary for human 
participants to show performance similar to that observed 
in non-human animals (Bradshaw & Reed, 2012; Reed, 
2007a).

The choice test started immediately after training fin-
ished (see Table 1). Two different dispensers were active at 
the same time, and, in order to insert coins, participants 
had to choose one of the dispensers by clicking on it. The 
hand holding the coin appeared on top of the dispenser 
every time the choice occurred.

Both RR and RPI schedules specified the probability 
that each insertion of a coin into a dispenser would yield 
M&Ms. In the case of the RR schedule, the reinforcement 
probability was simply the reciprocal of the schedule 
parameter, which was determined for each participant and 
schedule by the yoking procedure. If, for example, the 
yoking procedure led to an RR schedule delivering rein-
forcement after five responses on average, then reinforce-
ment probability was simply 1/5. The probability of a 
response being rewarded on a RPI schedule was t/Tm, 
where the schedule parameter T was the programmed 
mean inter-reinforcement interval that the schedule aimed 
to maintain, and t was the total duration of the last m IRTs 
which, when divided by m, represented the mean IRT dur-
ing this period, or the local rate of responding. Therefore, 
on the RPI schedule, the probability that a particular 
response was reinforced did not depend on the last IRT, but 
on a set of m IRTs. As Dawson and Dickinson (1990) 
found that the performance of their rats was unaffected by 
the value of m when varied between 1, 5, and 50, we 
assigned a value of 5 to m. The algorithm for the regulated 
probability was set so that if the number of responses was 
less than the memory size of 5, the probability of rein-
forcement for the next response was calculated by taking 
the response rate for the number of responses currently 
emitted since the beginning of the trial. After five responses 
were emitted, the regulated probability was calculated 
with the memory size of 5 for the rest of the trial.

Results

Nine participants in total were discarded from the analysis 
either because they failed to respond in at least one of the 
master schedules, thereby producing undefined parameters 
for the yoked schedules, or because response rates for at 
least one master RPI schedule were so high that probabili-
ties of reinforcement for the yoked participant were less 
than .02, which would not allow the yoked participant to 
experience the schedule contingency during a 3-min trial. 
Participants that did not meet the criteria were excluded 
immediately after testing by examining their performance 
and before testing the next participant. This resulted in the 
following number of participants excluded from each 
group: Group A1: two participants; Group B1: two partici-
pants; Group A2: four participants; Group B2: one 

participant. Following these exclusions, each group con-
sisted of nine participants.

Choice test.  As shown in Figure 2, participants responded 
at a higher rate on the RRy10 schedule than on the RRy30, 
F(1, 34) = 21.01, p < .01, η2 = .38, 90% confidence inter-
val, CI [.17, .53], thereby confirming that performance in 
this choice test is sensitive to a major determinant of 
instrumental responding, the reinforcement probability. Of 
most theoretical significance, however, is the finding that 
the RRy30 schedule attracted a higher rate of responding 
than the RPI30/y30 schedules, F(1, 34) = 5.53, p=.02, η2 = 
.14, 90% CI [.01, .31], despite the reinforcement probabili-
ties being the same. The magnitudes of these schedules 
effects did not vary reliable across the four groups. There 
was no significant effect of group on the response rate nor 
a significant Schedule × Group interaction for the RRy10–
RRy30 contrast—F(1, 34) = 0.26, p = .61, η2 = .01, 90% CI 
[.00, .11]; F(3, 34) = 0.91, p = .35, η2 = .07, 90% CI [.00, 
.18], respectively—and the RRy30–RPI30/y30 contrast—
F(1, 34) = 0.29, p = .60, η2 = .01, 90% CI [.00, .11]; F(3, 
34) = 1.15, p = .29, η2 = .09, 90% CI [.00, .20], 
respectively.

Training.  Table 2 shows that the response rates were uni-
formly high during the last four trials of training (the sec-
ond 3-min trials for each schedule). The effects of schedule, 
F(3, 102) = 0.28, p = .84, η2 = .01, 90% CI [.00, .03], and 
group, F(1, 34) = 1.06, p = .31, η2 = .03, 90% CI [.00, 
.17]), and their interaction, F(3, 102) = 0.60, p = .62, η2 = 
.02, 90% CI [.00, .05], were not significant. We suspect 

Figure 2.  Mean response rates in the two choice tests (Trials 
9 and 10). RPI = regulated probability interval; RR = random 
ratio. Error bars indicate 95% confidence intervals.
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that the effects of these factors, which were evident during 
the choice test, were not observed in training because the 
low cost of responding did not constrain performance in 
the way that the choice of one option at test constrained 
performance on the other option.

Yoking analysis.  As noted in the introduction, the reason for 
using the RPI schedule to examine the ratio–interval con-
trast is the fact that this schedule controls the differential 
reinforcement of long IRTs produced by standard interval 
schedules. Therefore, if our yoking procedure was suc-
cessful in controlling for reinforcement probability, then 
associative theories predict similar levels of responding 
for RR and RPI schedules in the choice test. To investigate 
whether these conditions were met, we analysed the IRTs 
and reinforcement probabilities during the last four train-
ing trials.

As well as presenting the standard analysis of variance, 
we also evaluated the predicted null hypotheses for the 
IRTs and reinforcement probabilities using Bayesian pro-
cedures (Bayes Factor, BF01). We interpreted, in each case, 
the level of evidence in favour of the null following the 
guidelines provided by Jenkins (1961, as cited in Kass, 
1993). Following suggestions from Rouder, Speckman, 
Sun, Morey, & Iverson (2009), we assigned a width of 1 
for a prior Cauchy distribution.

Probability of reinforcement.  The reinforcement prob-
abilities, which are displayed in Table 2, were analysed 
in accordance with the two pre-planned contrasts of the 
choice test. Two separate 2 (schedule) × 4 (group) analyses 
of variance (ANOVAs) were run for the RRy10–RRy30 
and for the RPI30y30–RRy30 contrasts. The probability of 
reinforcement for the RR schedule whose master interval 
was 10 s was higher than that for the RR schedule whose 
master interval was 30 s, F(1, 32) = 34.0, p < .01, η2 = 
.52, 90% CI [.29, .64], but neither the effect of group, F(3, 
32) = 2.05, p = .13, η2 = .16, 90% CI [.00, .29], nor the 
Group × Schedule interaction, F(3, 32) = 0.21, p = .89, η2 
= .02, 90% CI [.00, .07], was significant. By contrast, the 
probabilities for the RRy30 and RPI30/y30 were identical 
(.08), F(1, 32) = 0.07, p = .80, η2 = .00, 90% CI [.00, .08], 

BF01 = 7.47 (moderate), and therefore higher response rate 
generated by the RRy30 schedule than by the RPI30/y30 
schedule in the second choice test cannot be attributed to 
a difference in reinforcement probability. There were no 
effects of group, F(3, 32) = 1.61, p = .20, η2 = .13, 90% 
CI [.00, .26], nor significant interactions between schedule 
and group, F(1, 32) = 1.06, p = .38, η2 = .03, 90% CI [.00, 
.17], for this contrast.

IRTs.  For the IRT analysis, we used as the dependent 
variable the ratio of the mean reinforced IRT to the mean 
IRT emitted on each schedule, which is also displayed in 
Table 2. Because neither the RPI nor the RR schedule rein-
forced any particular IRT size, we did not expected this 
ratio to differ significantly across schedules. In line with 
this prediction, the ratio did not differ for the two pre-
planned schedules of the choice test: RRy10–RRy30, F(1, 
28) = 0.02, p = .89, η2 = .00, 90% CI [.00, .03], BF01 = 7.08 
(moderate); RPI30y30–RRy30, F(1, 23) = 1.23, p = .27, η2 
= .05, 90% CI [.00, .23], BF01 = 4.57 (moderate). There-
fore, the higher response rate generated by the RRy30 
schedule than by the RPI30/y30 schedule in the second 
choice test cannot be attributed to a differential reinforce-
ment of long IRTs. No effects of group or interactions were 
found (all Fs < 1.47).

General discussion

After a training stage with RR and RPI schedules, we 
presented participants with two choice tests where they 
had to distribute responding between pairs of schedules 
that they experienced during training. In the first test, 
participants responded more to the RR schedule with a 
higher probability of reinforcement, thereby demonstrat-
ing the sensitivity of our procedure to the variable that 
associative theories assume is a critical determinant of 
learning. Additionally, and of more theoretical impor-
tance, in a second choice test an RR schedule attracted 
more responding than an RPI schedule with a compara-
ble probability of reinforcement. Taken together, these 
two results pose a challenge for the application of asso-
ciative theories to instrumental learning.

Table 2.  Mean values and 95% CIs for response rates, ratio of mean reinforced IRT to mean overall IRT, and probability of 
reinforcement for RR and RPI schedules during the final four trials of training.

Schedule Response rate IRT ratio Probability of 
reinforcement

M CI M CI M CI

RPI10/y10 48.8 [32.0, 65.6] 1.2 [1.0, 1.5] .17 [.12, .21]
RPI30/y30 48.9 [26.7, 71.0] 1.3 [0.8, 1.7] .08 [.05, .10]
RRy10 48.5 [33.8, 63.2] 1.0 [0.9, 1.1] .23 [.17, .28]
RRy30 54.4 [33.1, 75.6] 1.0 [0.7, 1.2] .08 [.05, .12]

Note: Response rates: responses per min. RPI = regulated probability interval; RR = random ratio; CI = confidence interval; IRT = inter-response time.
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Mackintosh (1974, pp. 216–222, 1983, pp. 86–99) 
underscored the importance of the parallels between 
instrumental and classical conditioning by noting that 
numerous phenomena from Pavlovian conditioning 
appeared to have an instrumental counterpart (Dickinson, 
Peters, & Shechter, 1984; Dickinson, Watt, & Griffiths, 
1992; Hammerl, 1993; St. Claire-smith, 1979). If the con-
ditions that brought about these phenomena appeared to be 
the same, then the mechanisms should also be similar. In 
order to explain instrumental data, an associative theory 
simply needs to replace the Pavlovian stimuli with the 
instrumental response as the target event; the mechanisms 
for learning the action–outcome (A–O) association could 
then be analysed in the same terms as in the Pavlovian 
case.

Most associative theories of Pavlovian conditioning are 
formalized by using a prediction error to modulate the 
amount of learning acquired with successive stimulus–
outcome pairings (Mackintosh, 1975; Pearce & Hall, 
1980; Rescorla & Wagner, 1972). The most influential 
theory, the Rescorla and Wagner model (R–W), states that 
the change in associative strength of a particular stimulus 
will be a function of the prediction error, λ −∑V, where 
λ is the maximum associative strength supported by the 
outcome, and ΣV  is the total associative strength of all 
the stimuli present on the trial. The basic idea embodied in 
the prediction error term—and, in particular, in the sum-
mation term—is that conditioning would take place not 
only by contiguous stimulus–outcome pairings, but only if 
the target event provides subjects with further information 
about the occurrence of the outcome upon its presence. If, 
furthermore, the function relating learning and perfor-
mance is monotonically increasing, and reinforcement is 
always contingent to a response being performed, then 
those actions with higher probabilities of reinforcement 
should be performed more vigorously than those with 
lower probabilities.

The problem that arises when trying to reconcile this 
idea with free-operant experiments is the observation that 
RR schedules support higher levels of responding than 
yoked RI schedules when the probability of reinforcement 
is matched (Catania et al., 1977; Reed, 2001c). Moreover, 
the result also holds when the reinforcement rates are 
matched, and hence the reinforcement probability is higher 
for interval schedules (Bradshaw et al., 2015; Bradshaw & 
Reed, 2012; McDowell & Wixted, 1986; Peele et al., 1984; 
Zuriff, 1970). For this reason, models grounded in the 
basic law of effect have mostly relied on the differential 
reinforcement of different IRT durations, by arguing that 
on RI schedules the probability of reinforcement is higher 
for longer IRTs, and therefore the distribution of emitted 
IRTs should have its peak on longer IRTs for RI schedules, 
thus generating lower response rates.

A number of mechanistic models have been proposed 
following this reasoning. Peele et al. (1984), for example, 

proposed a model in which a number of past IRTs are 
saved in subjects’ memory, and responding is generated by 
sampling an IRT duration from the resulting distribution of 
reinforced IRTs. As a result of this algorithm, they were 
able to replicate the ratio/interval difference observed for 
regular VI schedules. A similar IRT model was recently 
proposed by Tanno and Silberberg (2012; see also Wearden 
& Clark, 1988), who modified the sampling procedure and 
extended Peele et al.’s model to predict a wider range of 
data. However, the problem of any mechanistic model 
based on IRT reinforcement comes from the fact that on 
the RPI schedule the reinforcement probability is set for 
the following response, so it is independent of the current, 
or last, IRT. In other words, the distribution of reinforced 
IRTs cannot be predicted prior to subjects’ actual perfor-
mance, making these models silent with respect to a ratio-
interval contrast if the interval schedule does not reinforce 
any particular IRT size.

Mechanistic models have been challenged in recent 
years by reinforcement learning (RL) models of decision 
making (Daw & Doya, 2006; Daw, Niv, & Dayan, 2005; 
Dezfouli & Balleine, 2012, 2013; Niv, 2007; Niv, Daw, 
Joel, & Dayan, 2007). Inspired by the computer science 
literature, these models consider subjects as maximizing 
agents in an uncertain world. By deciding which action to 
perform in a certain state (a particular set of stimuli; some 
environmental condition), their goal is to obtain the maxi-
mum number of rewards in an experimental session. 
Through experience, the agent is assumed to be capable of 
learning a policy of actions that is consistent with such 
maximization. An example of this class of models was 
proposed by Niv (Niv, 2007; Niv et  al., 2007). In this 
model, for each state the agent selects the latency, or 
instantaneous response rate (see Killeen, 1994; Killeen & 
Sitomer, 2003), with which to perform the action. Each 
action has a cost, and the variable that the agent aims to 
maximize is the difference between the number of rein-
forcers per session and the total cost of responding to 
obtain those reinforcers. Crucially, the expected rate of 
reinforcement is a function of the probability of reinforce-
ment per action in a particular state: For the same type of 
reinforcer, the agent will prefer those actions with higher 
probabilities of reinforcement; once the action is chosen, 
the agent will choose a latency—and, consequently, a 
response rate—such that the trade-off between responding 
(and getting more rewards) and not responding (and losing 
otherwise obtainable rewards) is optimal. In this model, 
the probability of transition to a rewarded state on RI 
schedules is given by P(Sr | τ) = 1 – exp(–τ/T), where T is 
the scheduled interval, and τ is the latency of the response 
(Niv, Daw, & Dayan, 2005). It follows from this expres-
sion that, as τ increases, so does P Sr( | )τ , which results in 
the selection of a lower response rate. It is thus evident that 
Niv’s (2007) model still relies on a similar argument to that 
of IRT reinforcement models and, as a consequence, lacks 
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the explanatory power to predict the ratio-interval differ-
ence when the interval schedule explicitly controls for IRT 
reinforcement through the use of an RPI schedule.

Perhaps the best explanation for the present data was 
offered by Baum (1973 but see: Thomas, 1981) more than 
40 years ago. In his paper, Baum argues for a law of effect 
that is not based on probability of reinforcement, but rather 
on the linear correlation between responses and reinforc-
ers. Baum offered a systematic analysis of such an 
approach to establish that instrumental responding based 
on correlations provides better predictions than one based 
on reinforcement probability. In his paper, he proposed 
that the correlation could be instantiated by dividing an 
experimental session in k different time-windows and con-
sidering the number of responses and reinforcers in each 
window. Formally, if bi and ri represent, respectively, the 
number of responses and reinforcers in the ith window, 
then each window can be regarded as an ordered pair (bi, 
ri), i = 1, . . . k, from which a standard correlation coeffi-
cient can be calculated as

ρbr =
− −

=∑
=i

i i

b r b r

k b b r r

ks s

COV b r

s s
1

( )( ) ( , )

where COV b r( , )  is the covariance between b and r, b  and 
r  the average responses and reinforcers per window, and sb 
and sr the standard deviations of b and r, respectively.

Following Baum (1973), Dickinson (1985, 1994; 
Dickinson, Balleine, Watt, Gonzalez, & Boakes, 1995) 
outlined a correlational-based theory of instrumental goal-
directed responding, arguing that goal-directed actions 
might be assumed to be driven by a mechanism whereby 
subjects’ experience of the A–O correlation results in the 
formation of a causal link between the representations of 
these two events. Although several predictions can be 
anticipated from this view, the one that is most important 
for our purposes is the one that anticipates that schedules 
that bring about positive A–O correlations should support 
higher levels of responding than those that do not hold this 
property (Dickinson, 1985, 1994; Dickinson et al., 1995; 
Kosaki & Dickinson, 2010). Because on ratio schedules 
response rates are linearly correlated with reinforcement 
rates, these can be regarded as the cardinal example of 
such a schedule. Training under RR schedules should thus 
result in the formation of a causal A–O connection. By 
contrast, because on interval schedules the relationship 
between response rate and reinforcement rate is con-
strained by the programmed interval parameter, these 
schedules produce low A–O correlations. This, in turn, 
should result in a weak casual A–O connection. As a result, 
when presented with a choice test between the RR and the 
RPI schedules for the same probability of reinforcement, 
subjects should decide to distribute their responding in 
favour of the RR schedule because in this scenario a higher 

correlation implies higher causal control. The approach is 
also consistent with the results of the first choice test in 
that participants should prefer the RR with the higher A–O 
correlation.

Figure 3 shows a simulation of a correlational approach. 
The left panel shows the correlation coefficient obtained 
for RR10 and RR30 schedules; the right panel shows the 
simulation of a master RPI-30 s group and a RR with 
matched probabilities of reinforcement. The simulations 
were run assuming an experimental session comprising 
360 10-s windows, using a response rate similar to that 
obtained in the last trial of training of this study (50 
responses/min) and a number of simulations equal to the 
number of data points for each schedule (i.e., 36 subjects 
per schedule). Although several rules for calculating the 
correlations are possible—such as considering only a local 
response rate—for simplicity we calculated the correla-
tions across the whole experimental session simulated. 
Responding was generated by simulating, for each second, 
a Bernoulli trial with a constant probability of success 
equal to .83—so that 50 responses on average were gener-
ated in a minute. This implementation ensures that the 
number of responses varies across windows, and therefore 
the correlation coefficient can be calculated.

As can be seen in the figure, a correlational approach 
offers qualitative predictions in line with the present data: 
If instrumental responding is a monotonic transformation 
of the A–O correlation, then subjects should respond more 
to the RR10 than to the RR30, and more to the RRy30 than 
to the RPI30.

Figure 3.  Simulations of a correlational theory of instrumental 
responding for the present data. RPI = regulated probability 
interval; RR = random ratio; A–O = action–outcome. Error 
bars represent 95% confidence intervals.
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The correlational approach to goal-directed responding 
may also shed light into the topic of judgments of causality 
in humans, where it has been demonstrated that response 
rates (Shanks, 1993; Shanks & Dickinson, 1991) and also 
causal judgments of the A–O relationship tend to correlate 
with the ΔP metric (Chatlosh, Neunaber, & Wasserman, 
1985; Dickinson, Shanks, & Evenden, 1984; Shanks, 
1991, 1995). In variance with this view, studies on rein-
forcement schedules have reported both higher response 
rates and causal ratings for RR than for RI schedules 
despite having controlled for the probabilities of reinforce-
ment or reinforcement rates (Bradshaw & Reed, 2012; 
Reed, 2001a, 2001c). The idea of causal control, however, 
can account for these results by arguing that ratings for 
ratio schedules are higher due to the higher A–O correla-
tion they support. Likewise, given the low A–O correlation 
of the RPI schedule, participants should report lower 
causal ratings on the RPI than on the RR schedule for the 
same probability of reinforcement. A study by Tanaka, 
Balleine, and O’Doherty (2008) provided further data in 
support to this idea. In their study, Tanaka et al. calculated 
the contingency levels experienced by participants during 
the task by using a procedure similar to that offered by 
Baum (1973). This procedure allowed them to show not 
only that causal ratings were correlated with these differ-
ent levels, but also that the blood-oxygen-level-dependent 
(BOLD) signal in the medial prefrontal cortex followed 
the same pattern, suggesting that such brain structure 
might be involved in the online computation of an A–O 
correlation as proposed by Baum (1973).

The role of the A–O correlation as a determinant of 
instrumental performance has also found support in 
some studies with human participants using random-
interval-plus-linear-feedback (RI+) schedules. RI+ 
schedules, like standard-interval schedules, differen-
tially reinforce long IRTs, while at the same time instan-
tiating a ratio-like positive A–O correlation, and 
therefore complement RPI schedules in the analysis of 
the ratio–interval difference. Whereas a correlational 
theory of goal-directed behaviour argues that RR sched-
ules maintain a higher response rate than matched RPI 
schedules, it also anticipates equivalent responding on 
RR and RI+ schedules. Such equivalence has been 
reported for the RR–RI+ contrast (McDowell & Wixted, 
1986; Reed, 2007a), at least at high response rates 
(McDowell & Wixted, 1986; Reed, 2007b, 2015).

Whatever the merits of our new experimental design, 
the present study suggests that the probability of reinforce-
ment might not be the only variable involved in the acqui-
sition of instrumental responding. Although associative 
theories could provide a reasonable explanation in terms of 
the representation of the events involved in an instrumen-
tal learning scenario, they do not provide an account of the 
mechanisms involved in the acquisition of instrumental 
performance in free-operant procedures. In fact, it seems 

plausible that schedules’ differences are partly brought 
about by different A–O correlations—or any other 
extended measure of this relationship—and that this vari-
able is responsible in setting up a causal A–O representa-
tion. Our results thus challenge the notion advocated by 
Mackintosh (1974, 1983) of similar associative processes 
underlying classical and instrumental conditioning.
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