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In order to adapt to their environment, organisms must learn to 
respond similarly to nonidentical objects from the same cate-
gory (categorical responding) as well as to respond differently 
to similar objects from the same category (noncategorical dis-
crimination). Underlying such learning must be a psychologi-
cal mechanism that detects and extracts those aspects of 
objects that are invariant across class members, to support cat-
egorization, as well as those aspects that are specific to each 
stimulus, to support discrimination. Once these different stim-
ulus properties are extracted, they should control behavior in a 
task depending on whether they are more useful or less useful 
for achieving adaptive performance.

An important aspect of categorization research is under-
standing how animals learn to classify photographs of natural 
objects (Lazareva & Wasserman, 2008). We recently proposed 
a model of this categorization behavior based on principles 
derived from associative-learning theory (Soto & Wasserman, 
2010). The idea behind this model is simple: Animals repre-
sent each image as a collection of “elements,” which vary in 
their level of specificity and invariance with respect to the 
stimuli they embody. Some elements tend to be activated  
by a single image only—these elements represent the image’s 
stimulus-specific properties; other elements are activated by 

several different images depicting objects from the same  
category—these elements represent category-specific proper-
ties of the image. In a categorization task, these stimulus prop-
erties are associated with responses depending on the ability of 
those properties to predict reward via an error-driven learning 
rule (Rescorla & Wagner, 1972). Stimulus-specific properties 
control performance in discrimination tasks, whereas category-
specific properties control performance in categorization tasks.

Error-driven learning is especially useful in situations in 
which organisms must predict important outcomes by assess-
ing signaling stimuli. In a categorization task, animals must 
predict which response to a particular stimulus will produce 
food reward. How much learning occurs on each trial is pro-
portional to the degree of error made in predicting the out-
come. If the outcome is unexpected, then the preceding 
stimulus should acquire a strong association with that out-
come; but if the outcome is perfectly predicted, then no learn-
ing about the stimulus should occur.

Corresponding Author:
Fabian A. Soto, Department of Psychology, University of Iowa,  
Iowa City, IA 52242 
E-mail: fabian-soto@uiowa.edu

Missing the Forest for the Trees: 
Object-Discrimination Learning Blocks 
Categorization Learning

Fabian A. Soto and Edward A. Wasserman
University of Iowa

Abstract
Growing evidence indicates that error-driven associative learning underlies the ability of nonhuman animals to categorize 
natural images. This study explored whether this form of learning might also be at play when people categorize natural objects 
in photographs. Two groups of college students (a blocking group and a control group) were trained on a categorization task 
and then tested with novel photographs from each category; however, only the blocking group received pretraining on a task 
that required the discrimination of objects from the same category. Because of this earlier noncategorical discrimination 
learning, the blocking group performed well in the categorization task from the outset, and this strong initial performance 
reduced the likelihood of category learning driven by error.  There was far less transfer of categorical responding during testing 
in the blocking group than in the control group; this finding suggests that learning the specific properties of each photographic 
image in pretraining blocked later learning of an open-ended category.
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Researchers generally agree that error-driven learning 
plays an important part in simple forms of associative learn-
ing, such as Pavlovian and instrumental conditioning 
(Schwartz, Wasserman, & Robbins, 2002). Many different 
models of associative learning (reviewed by Vogel, Castro, & 
Saavedra, 2004) are based on an error-driven learning rule. 
The same is true of models of more complex cognitive phe-
nomena, including connectionist networks (Rumelhart & 
McClelland, 1986) and reinforcement-learning models (Frank 
& Daw, 2009). In addition, there is growing neurobiological 
evidence that prediction errors are computed in the brain and 
used for learning and other adaptive functions (Maia, 2009; 
Niv, 2009; Schultz & Dickinson, 2000).

Error-driven learning explains several results in the litera-
ture on natural-image categorization by animals; it also gener-
ates new predictions about the conditions that should foster or 
hinder categorization learning (see Soto & Wasserman, 2010). 
One key prediction is that animals may be impaired in learning 
that a set of stimuli belongs to a category if they have learned 
previously to discriminate among those stimuli.

Table 1 outlines an experimental design devised to test this 
prediction. The experimental condition is termed blocking. 
Participants are trained in Phase 1 on a pseudocategorization 
task, in which photographs of objects from two basic-level 
categories are arbitrarily assigned to one of two different 
responses. This task cannot be solved by relying on perceptual 
resemblance among stimuli in the same class; participants must 
learn instead to discriminate objects from the same basic-level 
category. In Phase 2, training continues with only half of the 
previously trained stimuli, but now in a true categorization task, 
in which all of the photographs from the same category are 
assigned to the same response. Because this stimulus-response 
mapping was trained earlier in the pseudocategorization task, 

participants should maintain good discrimination behavior 
and make few, if any, errors in predicting the correct response 
for each of the stimuli. If learning is driven by prediction error, 
then learning the mapping of categories to responses should be 
impaired. In contrast, the type of training in Phase 2 should 
lead to robust categorization learning if pseudocategorization 
training does not precede it, as in the control condition for 
Experiment 1, detailed in Table 1.

Figure 1a shows the predictions of our error-driven learn-
ing model for this experiment. (A more detailed description of 
this model and the parameter values used in the simulation can 
be found in Soto & Wasserman, 2010.) The model predicts 
that, during testing with both stimuli previously used in train-
ing and novel stimuli, the control condition should foster high 
performance with the training stimuli, as well as robust trans-
fer of learning to novel exemplars from each category. Such 
transfer is usually taken as evidence of categorization learning 
(Bhatt, Wasserman, Reynolds, & Knauss, 1988; Herrnstein, 
1990). In contrast, the blocking condition should produce 
much lower transfer of learning to novel stimuli from the 
trained categories.

As shown in Figure 1b, this prediction proved to be true for 
pigeons (Soto & Wasserman, 2010). The qualitative pattern of 
results was the same in the observed data and the simulated 
data: Figures 1a and 1b both show a disparity in transfer 
behavior that is analogous to the blocking effect in classical 
conditioning (Kamin, 1969)—this effect is generally consid-
ered evidence of error-driven learning.

As for humans, research in object recognition has largely 
focused on how the visual system extracts shape information 
from images and builds object representations. Theories in this 
area place little emphasis on the role of supervised learning 
and decision processes in categorization (Palmeri & Gauthier, 

Table 1. Conditions Used in Experiments 1 Through 3

Training

Condition Phase 1: pseudocategorization Phase 2: categorization      Generalization testing

Blocking—Experiments 1, 2, and 3 Category 1—Set A, Response 1
Category 2—Set A, Response 2
Category 1—Set B, Response 2
Category 2—Set B, Response 1

Category 1—Set A, Response 1
Category 2—Set A, Response 2

Phase 2 training trials
Category 1—testing set
Category 2—testing set

Control—Experiment 1 — Category 1—Set A, Response 1
Category 2—Set A, Response 2

Phase 2 training trials
Category 1—testing set
Category 2—testing set

Control—Experiment 2 Category 1—Set A, Response 2
Category 2—Set A, Response 1

Category 1—Set A, Response 1
Category 2—Set A, Response 2

Phase 2 training trials
Category 1—testing set
Category 2—testing set

Control—Experiment 3 Category 1—Set B, Response 1
Category 2—Set B, Response 2
Category 1—Set C, Response 2
Category 2—Set C, Response 1

Category 1—Set A, Response 1
Category 2—Set A, Response 2

Phase 2 training trials
Category 1—testing set
Category 2—testing set

Note: A “set” refers to 10 different photographs depicting objects from a particular basic-level category.
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2004). Many contemporary models of object recognition 
(Hummel, 2001; Hummel & Stankiewicz, 1998; Riesenhuber 
& Poggio, 1999; Serre, Oliva, & Poggio, 2007) do not include 
error-driven learning among their key mechanisms. Thus, it is 
an open question whether error-driven learning participates in 
human categorization of natural objects, as seems to be the 
case with other animals.

Research with artificial categories has provided some direct 
evidence for error-driven learning in visual categorization 
(Gluck & Bower, 1988; Nosofsky, Kruschke, & McKinley, 
1992; Shanks, 1991). But the main focus in this area of 
research has been the structure of category-knowledge repre-
sentations and how such representations are used in decision 
making (Palmeri & Gauthier, 2004). In this area, too, many 
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Fig. 1. Predicted and observed mean proportions of correct test trials as a function of group (blocking 
or control) and trial type (training stimuli or novel stimuli). The graphs show the predictions of our 
model involving error-driven learning (a; for a description of the model and the parameters used in this 
simulation, see Soto & Wasserman, 2010), replotted data from a previous experiment studying pigeons 
(b; Soto & Wasserman, 2010), and data from the three experiments reported here (c–e). Error bars 
represent standard errors of the mean.
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popular theories do not incorporate error-driven learning (e.g., 
Ashby, 1992; Nosofsky, 1984), and assumptions about cate-
gory learning are only rarely explored. It is also unclear how 
the learning principles that have been proposed to explain arti-
ficial categorization might participate in the categorization of 
natural objects.

The prime aim of the present study was to determine whether 
category learning is blocked in humans, as it is in pigeons, by 
prior noncategorical-discrimination learning in a task involving 
photographs of natural objects. Evidence of this effect would 
suggest that the same learning principles exhibited in animals 
also participate in object categorization in people.

To make the results of this study comparable with those of 
prior animal research, we kept the stimuli and procedures as 
similar as possible to the methods used with pigeons. Using 
the same stimuli as in previous animal research (photographs 
of cars, chairs, flowers, and people; see Fig. 2) was also inter-
esting because it seems natural for people to represent such 
stimuli very differently than pigeons do. For pigeons, these 
photographic stimuli are entirely novel. For people, these 
stimuli are generally familiar; each of these images has a read-
ily available verbal label, which allows learning of a simple 
classification rule of the form “if the photograph depicts a car, 

then respond ‘left.’” Despite any differences in the way 
humans or pigeons represent these stimuli, the experimental 
design used in our study was created to test whether the prin-
ciples of category learning are the same for both species, that 
is, whether the absence of prediction error impairs categoriza-
tion learning in people as it does in pigeons.

Experiment 1
This experiment was designed to test the blocking of category 
learning in people by using the same design previously used 
with pigeons.

Method
Participants. Forty-eight undergraduates (males and females) 
from the University of Iowa participated in exchange for 
course credit. They had normal or corrected-to-normal vision.

Stimuli and apparatus. The stimuli were 120 color photo-
graphs depicting 30 objects from four categories (people, 
flowers, cars, and chairs; see Fig. 2 for black-and-white exam-
ples) against varied backgrounds. Only photographs from two 

People Flowers Cars Chairs

Fig. 2. Examples of stimuli used in the present study and in our previous pigeon experiments (Soto & Wasserman, 2010) on natural-image categorization.
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categories were shown to each participant. Across partici-
pants, all four of the categories were used equally often in all 
possible two-category combinations, and the assignment of 
categories to response keys was counterbalanced.

The experiment was conducted on five Apple eMac com-
puters. The procedure was programmed using MATLAB 7.0.4 
(MathWorks, Natick, MA). Images of the photographs were 
displayed on a 107.0-cm × 70.5-cm area in the middle of the 
computer monitor. The response keys were two 2.5-cm ×  
2.5-cm icons displaying different black-and-white patterns. 
They were positioned on the screen immediately to the left and 
to the right of the display area. Auditory feedback was pro-
vided to participants through headphones.

Procedure. Participants were given written instructions that they 
would be presented with several photographs and asked to choose 
which of the two response keys was associated with each picture. 
Participants were told that they would at first have to guess which 
response was correct, but that they would receive feedback after 
every trial to help them improve their accuracy. Participants were 
asked to respond as quickly and accurately as possible.

Each trial began with a 1-s presentation of a white cross  
in the middle of the screen. Immediately afterward, a single 
photograph was presented on the screen. After 200 ms, 
response keys appeared—one to the left and one to the right of 
the photograph—and the participant had to mouse-click on 
one of the keys to advance the trial. Feedback about the par-
ticipant’s choice was provided to him or her for 1 s at the end 
of each trial: “Correct” or “incorrect” was displayed on the 
screen, and a pleasant chime or an unpleasant buzzer, respec-
tively, was sounded via the headphones. There was a 1-s inter-
trial interval before the next trial.

The experimental design included the blocking and control 
conditions shown in Table 1. Half of the participants were ran-
domly assigned to each condition. In each phase of each con-
dition, a training block involved one presentation of each trial 
type shown in Table 1. Each trial type was repeated 10 times 
during a block; on each trial, a different photograph from a 
single category was presented, and a correct response was 
assigned exclusively to either the left or the right response key. 
Trials were randomized within blocks.

Participants in the blocking group were given 10 blocks of 
training in Phase 1, immediately followed by five blocks of train-
ing in Phase 2. The testing phase started immediately after the 
end of Phase 2; it involved 10 trials presenting different novel 
stimuli from each of the two training categories intermixed with 
all trials of one block of Phase 2 training. Participants in the con-
trol group were given the same training and testing as partici-
pants in the blocking condition, but without Phase 1 training.

Results and discussion
Figure 1c shows the mean proportion of correct choices in the 
testing phase for the two groups. Performance on Phase 2 
training trials was very high and nearly identical in the two 

groups; however, the generalization of categorization learning 
differed greatly. The mean proportion of correct choices in 
response to novel stimuli was high for participants in the con-
trol group (M = .97, SE = .03), but considerably lower for par-
ticipants in the blocking group (M = .68, SE = .09).

The testing data were analyzed with a 2 (group: blocking or 
control) × 2 (trial type: training stimuli or novel stimuli) × 12 
(counterbalancing) analysis of variance (ANOVA), with choice 
accuracy as the dependent variable and participant as a random 
factor. There was a significant interaction between group and 
trial type, F(1, 24) = 56.99, p < .001, ηp

2 = .70. Post hoc tests 
(Newman-Keuls, α = .05) disclosed that the disparity between 
groups was significant on trials with novel stimuli, d = 0.80, 
but not on trials with training stimuli, d = 0.06. Furthermore, 
the disparity between performance with training stimuli and 
performance with novel stimuli was significant in the blocking 
group, d = 0.92, but not in the control group, d = 0.23.

The ANOVA also revealed a significant main effect of trial 
type, F(1, 24) = 80.68, p < .001, ηp

2 = .77; this effect reflected 
the fact that both groups showed some decrement in perfor-
mance on the novel stimuli. Finally, there was a significant 
main effect of group, F(1, 24) = 48.08, p < .001, ηp

2 = .67; this 
effect was a consequence of the higher overall performance 
level of the control group. No other effects in the ANOVA 
were significant.

These results suggest that for humans, just as for pigeons, 
learning to discriminate objects from the same category 
impairs learning to sort the same objects into their basic-level 
categories. Without prior discrimination learning, categoriza-
tion learning generalizes almost perfectly to novel exemplars. 
This blocking effect is the first evidence indicating that error-
driven associative learning is involved in human categoriza-
tion of natural objects.

Experiment 2
Although the results of Experiment 1 were the direct predic-
tion of a model based on error-driven learning, they can be 
explained in another way. Stimuli from the same category 
were paired with more than one response only in the blocking 
condition, whereas in the control condition, stimuli from the 
same category were always assigned to a single response. The 
results may have been due to a decision process occurring in 
testing, rather than a learning effect during training. People in 
the control group might have shown a high level of categorical 
responding simply because they saw only one mapping of cat-
egories to responses in training and generalized that single 
mapping to the novel testing stimuli. In comparison, people in 
the blocking group might have shown a lower level of categor-
ical responding because they saw an inconsistent mapping of 
categories to responses in training.

This alternative explanation would be consistent with  
a model that stores the frequencies of event co-occurrences 
and classifies stimuli accordingly, as do some probabilistic 
models of associative learning (e.g., Cheng, 1997) and some 
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decision-based models of perceptual categorization (e.g., 
Ashby, 1992; Nosofsky, 1984). These theories are sensitive to 
conflicting information about the mapping between categories 
and responses, but they are insensitive to the temporal order in 
which that information is acquired; they assume that people 
memorize all of the co-occurrence information and later use it 
to make a decision, with each piece of information having the 
same impact over the final choice regardless of when it was 
received. In contrast, error-driven learning theories are sensi-
tive to the temporal order in which conflicting information is 
received, and this gives rise to trial-order effects. According to 
these theories, the most recently presented information has the 
greatest impact on behavior.

Participants in the control condition of Experiment 2  
(Table 1) were trained with one mapping of categories onto 
responses in Phase 1, but the opposite mapping in Phase 2. An 
error-driven learning model would predict that when shown 
new category exemplars in testing, participants should respond 
to them according to the category-response mapping learned 
most recently (in this case, in Phase 2). Thus, although the 
control condition in Experiment 2 involved an inconsistent 
category-response mapping across training phases, a model 
based on error-driven learning would still predict more cate-
gorical responding to the novel testing stimuli in this control 
condition than in the blocking condition.

In contrast, a decision model based on frequencies of co-
occurrences would give the same weight to the information in 
the two phases and predict no preference for one category-
response mapping over another. Thus, according to the deci-
sion model, the level of categorical responding to the novel 
testing stimuli should be similarly low in both the control and 
the blocking conditions. Experiment 2 tested which of these 
predictions would prevail.

Method
Participants were 72 undergraduates similar to the subjects in 
Experiment 1. Half were randomly assigned to the blocking 
group, and the other half to the control group. Stimuli, appara-
tus, and procedures were as described for Experiment 1, with 
the exception that participants in the control group were given 
five blocks of training in Phase 1, and the assignment of stimuli 
to responses in that group was opposite in Phase 1 and Phase 2.

Results and discussion
The main results from testing are shown in Figure 1d. The pat-
tern of results was the same as observed in Experiment 1: high 
performance for Phase 2 training trials in both groups and a 
disparity between groups in the level of transfer to the novel 
stimuli. The mean proportion of correct choices in response to 
novel stimuli was high in the control group (M = .96, SE = .03), 
but much lower in the blocking group (M = .67, SE = .08).

The testing data were analyzed with a 2 (group: blocking or 
control) × 2 (trial type: training stimuli or novel stimuli) × 12 

(counterbalancing) ANOVA, with choice accuracy as the 
dependent variable and participant as a random factor. A statis-
tically significant interaction between group and trial type, 
F(1, 48) = 58.39, p < .001, ηp

2 = .55, supported the described 
pattern of results. Post hoc tests (Newman-Keuls, α = .05) 
indicated that the disparity between groups was significant for 
novel stimuli, d = 0.81, but not for training stimuli, d = 0.02. 
Also, the disparity between trials with training stimuli and tri-
als with novel stimuli was significant in the blocking group,  
d = 0.94, but not in the control group, d = 0.19. As in Experi-
ment 1, there were significant effects of trial type, F(1, 48) = 
84.21, p < .001, ηp

2 = .64, and group, F(1, 48) = 61.06, p < 
.001, ηp

2 = .56. No other effects were significant.
These results replicate the blocking effect found in Experi-

ment 1; they also refute an explanation of that effect based on 
the inconsistent assignment of stimuli to responses in the block-
ing group. In this experiment’s control group, participants gen-
eralized the category-response mapping that they learned in 
Phase 2 to novel stimuli, and they did this even when they had 
experienced the opposite mapping in Phase 1. This result is 
inconsistent with an explanation of the blocking effect by deci-
sion models that propose that information is stored in the form 
of co-occurrence frequencies; instead, this result is consistent 
with an explanation in terms of error-driven learning.

Experiment 3
In Experiments 1 and 2, we inconsistently assigned categories 
to responses in the same training phase only in the blocking 
condition; we did this to encourage memorization of each indi-
vidual stimulus and its corresponding response. Under such 
conditions, however, participants might simply learn that 
whenever new stimuli are presented, they should try to memo-
rize their assigned responses. This approach would lead to ran-
dom responding to novel stimuli in testing.

To eliminate this possibility, we designed a different control 
condition in Experiment 3 (Table 1): Participants were trained 
on a pseudocategorization task in Phase 1, just as in the block-
ing condition. If what people learn in pseudocategorization 
training is a general “memorization” strategy that influences 
later choices, then participants in both the control condition and 
the blocking condition should show similar test behavior.

However, in this new control condition, Phase 2 training 
was carried out with novel stimuli from the training catego-
ries. Our account of category learning predicts that the novel 
stimuli shown in Phase 2 should produce prediction error and 
therefore prompt error-driven category learning that should 
generalize in testing, just as in the control conditions of Exper-
iments 1 and 2.

Method
Participants were 72 undergraduates similar to the participants 
in Experiments 1 and 2. Half were randomly assigned to the 
blocking condition, and half to the control condition. Stimuli, 
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apparatus, and procedures were the same as in Experiment 1, 
with the exception that participants in the control group were 
exposed to 10 blocks of training in Phase 1. This training 
involved a pseudocategorization task with stimuli that were 
different from the stimuli presented afterward in Phase 2.

Results and discussion
Results from testing are shown in Figure 1e. The pattern of 
results was the same as in Experiments 1 and 2. Performance 
on Phase 2 training trials was similarly high in the two groups. 
Testing performance on novel stimuli was high in the control 
group (M = .91, SE = .05), but much lower in the blocking 
group (M = .57, SE = .08).

The testing data were analyzed with a 2 (group: blocking or 
control) × 2 (trial type: training stimuli or novel stimuli) × 12 
(counterbalancing) ANOVA, with choice accuracy as the 
dependent variable and participant as a random factor. There 
was a significant interaction between group and trial type, 
F(1, 48) = 60.31, p < .001, ηp

2 = .56. Post hoc tests (Newman-
Keuls, α = .05) indicated that the groups differed significantly 
on trials with novel stimuli, d = 0.85, but not on trials with 
training stimuli, d = 0.03. Performance differed significantly 
between trials with novel stimuli and trials with training stim-
uli for the blocking group, d = 1.14, but not for the control 
group, d = 0.29. There were also significant effects of trial type, 
F(1, 48) = 114.44, p < .001, ηp

2 = .71, and group, F(1, 48) = 
39.58, p < .001, ηp

2 = .45. No other effects were significant.
These results replicate the blocking effect found in the two 

prior experiments and eliminate the possibility that mere pre-
training on a pseudocategorization task produces this effect. 
As predicted by error-driven learning, the blocking effect 
appears only if training in the categorization task involves the 
same stimuli previously experienced in a pseudocategoriza-
tion task. That is, the effect is stimulus-specific and cannot be 
explained by learning a general memorization strategy.

General Discussion
In three experiments, we found that participants’ categorization 
learning was impaired if they learned to discriminate objects 
from the same category prior to being instructed to sort those 
objects by that category; this observation was revealed by a gen-
eralization test with novel category exemplars. In Experiment 1, 
the results of the control condition showed that the same catego-
rization training the blocking group received, but without the 
prior discrimination training given to the blocking group, sup-
ported robust generalization to novel exemplars. In other words, 
when people first had to memorize individual objects and their 
arbitrarily assigned responses, they subsequently found it diffi-
cult to detect a change when all of the presented objects were 
sorted according to their basic-level categories; to put it collo-
quially, they “missed the forest for the trees.”

The results of Experiments 2 and 3 further suggest that  
the blocking effect is not due to inconsistent assignment of 

categories to responses or to the necessity of memorizing indi-
vidual stimuli early in training. Instead, we interpret these 
results as evidence that error-driven associative learning is 
involved in visual object discrimination and categorization  
by people, just as in the case of nonhuman animals (Soto & 
Wasserman, 2010).

If our view is correct, then these results add to a growing 
body of evidence suggesting that the mechanisms of object rec-
ognition and categorization are similar across different species. 
Prior research has found that both humans and pigeons rely  
on nonaccidental properties for three-dimensional shape iden-
tification (Gibson, Lazareva, Gosselin, Schyns, & Wasserman, 
2007). Here, we found that another important aspect of visual 
categorization is also similar in humans and pigeons: Across 
species, prediction error seems to be necessary for categoriza-
tion learning to occur.

The idea that associative-learning principles underlie cat-
egorization is not new (Gluck & Bower, 1988; Mackintosh, 
1995; Shanks, 1991). However, ours is the first evidence of 
the involvement of these principles in the categorization of 
real objects in photographs. These results were obtained using 
stimuli of greater external validity than the stimuli usually 
employed in artificial-categorization research. Our study  
thus joins previous work documenting the importance of  
associative-learning processes in cognition (for a review, see 
Siegel & Allan, 1996) and underscoring the generality of 
learning principles across species, stimuli, and experimental 
paradigms.

Although we have tried to eliminate alternative explana-
tions of our data, other possible interpretations might be evalu-
ated in the future. For example, it is possible that our 
pseudocategorization task does indeed foster a memorization 
strategy that control participants reassessed in Experiment 3 
after exposure to new stimuli. Nevertheless, it is unclear why 
participants in the blocking groups did not reassess their strat-
egy in the testing phase, during which they were presented 
with novel stimuli and explicitly trained on the categorization 
task. This and other hypotheses surely merit future empirical 
testing, but an explanation in terms of error-driven learning 
remains the most complete and parsimonious account of the 
available evidence.

In sum, our study provides evidence implicating associa-
tive-learning processes in humans’ discrimination and catego-
rization of objects in natural scenes. Similar evidence in 
animals suggests that common learning processes are deployed 
across diverse species to solve visual categorization tasks. Our 
study also proves that it is possible to investigate the learning 
mechanisms involved in object categorization using complex 
natural stimuli—this is a kind of task that has not been pursued 
in the past but may represent an interesting line of future 
investigation.
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