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A wealth of empirical evidence has now accumulated concerning animals’ categorizing photographs of
real-world objects. Although these complex stimuli have the advantage of fostering rapid category
learning, they are difficult to manipulate experimentally and to represent in formal models of behavior.
We present a solution to the representation problem in modeling natural categorization by adopting a
common-elements approach. A common-elements stimulus representation, in conjunction with an
error-driven learning rule, can explain a wide range of experimental outcomes in animals’ categorization
of naturalistic images. The model also generates novel predictions that can be empirically tested. We
report 2 experiments that show how entirely hypothetical representational elements can nevertheless be
subject to experimental manipulation. The results represent the first evidence of error-driven learning in
natural image categorization, and they support the idea that basic associative processes underlie this
important form of animal cognition.

Keywords: natural image categorization, animal learning, Rescorla–Wagner theory, stimulus sampling
theory

To survive and to reproduce, all organisms must adapt to a
complex and ever-changing environment. Even the same object
never provides the same information to the sensory organs on two
successive occasions, a problem that becomes particularly acute
when the behavioral task involves recognizing several different
objects from the same class.

Despite this variability in stimulation, humans and animals alike
learn to respond similarly to nonidentical objects from the same
category (categorization) as well as to respond differently to indi-
vidual objects from the same category (identification). Underlying
such categorization and identification behavior must be a psycho-
logical mechanism that detects and extracts those aspects of indi-
vidual objects and classes of objects that are invariant, to support
categorization, as well as those aspects that are specific to each
stimulus, to support identification (Ashby & Lee, 1993; Fetterman,
1996; Serre et al., 2005; Serre, Oliva, & Poggio, 2007).

It seems parsimonious to assume that similar mechanisms lie at
the root of both human and animal visual categorization. Even if a
uniquely human ability to categorize stimuli using rules and other
higher level cognitive processes is assumed (see Lea & Wills,
2008; Mackintosh, 1995), most researchers would agree that any
lower level mechanisms of categorization that are present in ani-
mals are likely to be found in humans as well. If that is indeed the

case, then animal research affords researchers a unique opportunity
to study the psychological and neural mechanisms of categoriza-
tion in a setting where the influence of past experience, genetic
variability, language, and other higher level forms of cognition can
be controlled and manipulated. On the other hand, if the principles
guiding categorization in humans and nonhuman animals prove to
differ from one another, then it would still be particularly infor-
mative to know how the same behavioral problem is solved in
different ways by different organisms, as well as how evolution
has shaped the strategies deployed by each.

Primates possess the most sophisticated visual system among
mammals. The only other animals that have evolved such highly
advanced vision are birds (Husband & Shimizu, 2001; Shimizu &
Bowers, 1999). This fact helps to explain why the pigeon has been
extensively used as a model animal to study the behavioral mech-
anisms of natural image categorization and object recognition
(Wasserman, 1993). The visual capabilities of pigeons are indeed
impressive; they include the ability to detect and to classify many
different classes of objects as well as the ability to transfer this
learning to novel exemplars from each class (Bhatt, Wasserman,
Reynolds, & Knauss, 1988; Herrnstein & Loveland, 1964; for
reviews, see Cook, 2001; Kirkpatrick, 2001; Lazareva & Wasser-
man, 2008; Wasserman, 1993, 1995; Wasserman & Bhatt, 1992;
Zentall, Wasserman, Lazareva, Thompson, & Rattermann, 2008).

These forms of discrimination learning and stimulus generali-
zation have now been studied for several decades, and an extensive
body of empirical data has accumulated during that time. Together
with the many practical advantages of research using avian species
instead of nonhuman primates, this accumulated knowledge af-
fords a unique opportunity for studying the general mechanisms of
visual categorization. Furthermore, this line of research in animal
cognition could soon become especially important and relevant,
given the increasing attention that is being paid to the study of
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vision using natural images (Felsen & Dan, 2005; Geisler, 2008;
Simoncelli & Olshausen, 2001); such natural images more closely
resemble the stimuli that are encountered by biological systems in
the real world than the more commonly used artificial stimuli of
the laboratory.

Surprisingly, empirical research in natural object categorization
by pigeons and other animals has not been accompanied by a
concomitant effort to provide a coherent theoretical explanation of
this behavior, a fact that makes it difficult to draw connections
between this realm of research and explorations of human vision
and other forms of animal learning. Questions about the conditions
that produce categorization learning, the contents of such learning,
and the rules that map learning onto performance (Rescorla, 1988)
remain unanswered. Some work has tried to identify the nature of
the representation that pigeons store during categorization learning
(Huber, 2001) and the conditions that foster categorization learn-
ing over simple discrimination learning (e.g., Wasserman & Bhatt,
1992; Wasserman, Kiedinger, & Bhatt, 1988). Yet a full theoret-
ical account including the formalization of a quantitative model
has proven to be elusive.

This state of affairs is particularly perplexing given the popu-
larity of the view that simple associative learning processes may be
responsible for open-ended categorization in pigeons and other
animals (e.g., Huber, 2001; Mackintosh, 2000) and given the fact
that contemporary associative learning models offer a wide range
of theoretical tools with which to model animal cognition, all of
them developed to a high degree of formalization (for a review, see
Vogel, Castro, & Saavedra, 2004). Indeed, the ability of quantita-
tive models of Pavlovian conditioning to predict and to explain a
wide range of experimental observations has led to their successful
application to human cognition. The same principles that explain
simple associative learning may be the foundation for verbal
learning, contingency judgment, transitive inference, and impor-
tant social and perceptual phenomena (for a review, see Siegel &
Allan, 1996). What is even more ironic is the fact that researchers
of human categorization have been applying animal learning the-
ories to their data for nearly 20 years (Gluck & Bower, 1988;
Kruschke, 2001; Shanks, 1991). We thus see that current theories
of animal learning have been widely applied to human categori-
zation phenomena but not so prominently to visual categorization
in animals.

Perhaps one factor contributing to this odd state of affairs is the
nature of the stimuli that have commonly been used in studies of
animal categorization. As noted earlier, many of these studies
trained pigeons to discriminate photographs of real-world objects,
whereas artificial categories are more commonly used in human
categorization research. Research in Pavlovian conditioning and
artificial categorization share the advantage of using elemental
stimuli that can easily be controlled by the experimenter and that
can straightforwardly be represented in computational models.
Natural categories have the advantages of being more readily
learned by pigeons (Lea, Wills, & Ryan, 2006) and of better
reflecting the complexity of the task faced by animals in their
natural environment, but natural categories have the disadvantage
of involving a large number of features that may act independently
or in concert to control behavior. Despite several efforts to isolate
the relevant features for classification (e.g., Aust & Huber, 2002;
Lazareva, Freiburger, & Wasserman, 2006; Lubow, 1974), this
task has proven to be very difficult. Even for the cases in which

such features have been isolated, the same properties found to
control behavior in one study may not control behavior in other
studies using different subjects and deploying different training
methods.

Therefore, anyone wishing to apply quantitative models of as-
sociative learning to the categorization of natural images is faced
with a major problem: how to formalize a representation of these
complex stimuli and the similarities and differences among them.
The work that we present here represents a simple solution to the
stimulus representation problem that arises from the use of com-
plex stimuli in natural categorization tasks. This solution is imple-
mented in a model that represents stimuli as overlapping collec-
tions of elements and that modifies their association with an
outcome according to an error-driven learning rule.

In the next section, we review the history of the common-
elements approach and its use in the explanation of discrimination
and generalization phenomena in animal learning. Then, we show
how this framework can be used to explain natural image catego-
rization in animals, providing a much-needed link between re-
search in this area and traditional animal learning theory. We
conclude by presenting empirical evidence that confirms two new
predictions from our model concerning the role of error-driven
learning in visual categorization.

The Common-Elements Approach

One of the best known ways to represent stimuli and the simi-
larity among them is through the notion of common elements.
According this idea, diagrammed in Figure 1, every stimulus is
processed as a set of representational elements. Two different
stimuli can share representational elements; the perceptual simi-
larity between them is a direct function of the proportion of
elements that they share (black elements in Figure 1). Elements
that are active only in the presence of one stimulus but not the
other (grey elements in Figure 1) represent the dissimilarity be-
tween them, thereby providing a basis for their discrimination.

Perhaps the first application of the common-elements idea in
animal learning theory was Konorski’s (1948) explanation of the
generalization of conditioned reflexes in terms of overlapping
“cortical centres,” which he proposed as an alternative to Pavlov’s
interpretation of generalization in terms of the irradiation of exci-

Figure 1. A common-elements representation of the similarity between
stimuli.
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tation from the center representing the original conditioned stim-
ulus. In Konorski’s words,

the intimate nature of the phenomenon of similarity between various
stimuli consists in the partial overlapping of the corresponding corti-
cal centres. The more extensive the overlapping, the closer is the
similarity . . ., and when this overlapping is virtually complete the
similarity passes into “identity.” (Konorski, 1948, p. 129)

Later, Estes and colleagues (Atkinson & Estes, 1963; Neimark
& Estes, 1967) developed the common-elements hypothesis within
the framework of stimulus sampling theory (SST), replacing
Konorski’s neurophysiological language with a more abstract no-
menclature. In SST, a stimulus is represented as a population of
independently variable elements. On any given learning trial, each
element may become active with a fixed probability and may be
fully connected to the response that is reinforced on that trial.
Generalization depends both on the proportion of elements con-
nected to a response from the originally conditioned population
and on the proportion of elements shared between that population
and the one representing the novel test stimulus.

One problem with SST explanations of stimulus control is that
the same common elements that account for generalization prevent
the model from learning to discriminate perfectly between similar
stimuli. Several contemporary theories of associative learning have
implemented a stimulus representation in terms of collections of
elements (Blough, 1975; Harris, 2006; McLaren & Mackintosh,
2000, 2002; Wagner, 1981), but they have solved the discrimina-
tion problem by including an error-driven learning rule, like the
one proposed in the Rescorla–Wagner model (Rescorla & Wagner,
1972). The Rescorla–Wagner learning rule states that the change in
the associative strength between a stimulus (or element) i and an
outcome j on a particular trial, or �Vij, is determined by the
following equation:

�Vij � �i�j��j � �Vij�, (1)

where �i and �j are learning rate parameters influenced by the
salience of i and j, respectively; �j is the maximum amount of
associative strength supported by j; and �Vij is the algebraic sum
of the associative strengths of all of the stimuli presented on that
particular trial. The most important feature of this and other
error-driven learning rules (Pearce, 1987; Pearce & Hall, 1980;
Wagner, 1981) is that the change in associative strength on each
trial reduces a prediction error, represented by the disparity be-
tween the associative strength that is supported by the outcome, �j,
and the associative strength of all of the stimuli that are presented
on that trial, �Vij. If several different stimuli are simultaneously
paired with the outcome during training, then the Rescorla–
Wagner learning rule distributes associative strength among them
according to their relative informational value in predicting the
outcome.

The interplay between a common-elements representation and
an error-driven learning rule has proven to be extremely powerful
in explaining stimulus control. Common representational elements
allow one to explain the generalization of responding among
different stimuli, whereas the error-driven learning rule allows one
to explain why nearly perfect discrimination can be achieved even
with highly similar stimuli (Gluck, 1992). Furthermore, the inter-
action between these factors leads to new predictions that are not
explained by either factor alone.

For example, Blough (1975) proposed a model in which repre-
sentational elements are sequentially ordered along a continuum
representing a particular stimulus dimension. If a stimulus pos-
sesses the property represented by that dimension, then its pres-
ence provokes the differential activation of several representa-
tional elements along the continuum. Coupled with an error-driven
learning rule, this stimulus representation can account for contrast
effects that have consistently been observed in the study of stim-
ulus generalization gradients and that cannot be explained by
traditional approaches (e.g., Spence, 1937).

Mackintosh and colleagues (Mackintosh, 1995; McLaren, Ben-
nett, Guttmannahir, Kim, & Mackintosh, 1995) used a simpler
version of Blough’s model to account for prototype effects in
artificial categorization by pigeons and people. These authors
proposed that the tendency to classify prototypes more accurately
as members of a category than other exemplars might arise be-
cause prototypes typically have fewer elements in common with
members of the other category. This common-elements account
can explain several experimental results obtained by these authors,
and it is closely related to the model that we present here. We show
below how useful it is to represent complex naturalistic stimuli in
terms of hypothetical elements, in the same way as Mackintosh
and colleagues have represented stimulus dimensions.

A study by Rescorla (1976) provides yet another example of the
utility of coupling a common-elements representation with an
error-driven learning rule; this example provides the inspiration for
the model presented here. Rescorla assumed that simple stimuli,
such as tones or lights, could be represented as compounds of both
unique and shared elements (e.g., AX and BX). This idea leads to
the prediction that a target stimulus might be more strongly asso-
ciated with an outcome by training involving a different, similar
stimulus than by training with the target itself. The notion is that
if Target Stimulus AX is paired with an unconditioned stimulus
(US), both A and X should acquire associative strength until the
two together perfectly predict the US. Later training with AX will
not increase its potential to evoke a response because learning
cannot occur if there is no error in predicting the US. However,
later training with a similar stimulus, BX, should result in an
increase in the associative strengths of both B and X—the unique
and common elements, respectively—because, in the absence of
A, the US is no longer perfectly predicted. The result should be a
conditioned response to AX that is enhanced through training with
BX but not through training with AX itself. Rescorla (1976) found
evidence for this prediction, which not only stands as impressive
confirmation of a common-elements theory of stimulus generali-
zation but also suggests that it may be possible to devise ingenious
ways to manipulate entirely hypothetical components of a stimulus
representation, a point to which we later return.

The Model

Stimulus Representation

One of the goals of the present work is to show that the simple
principles of the common-elements approach can also be used to
represent even the complex multidimensional stimuli that are used
in natural image categorization research. The idea is the same:
Two photographs of natural objects can be represented as collec-
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tions of elements, some unique to each particular photograph and
some shared by both.

The complexity in the representation of a whole category, in-
stead of just two stimuli, arises when one appreciates that percep-
tual categories have limitless members. With a larger number of
exemplars in a category, some elements could be common to all
N members, whereas others could be common to N � 1, N � 2,
N � 3, . . ., and to just one member. In this case, different elements
are more or less representative and diagnostic of the category,
depending on how many exemplars possess any given element.
The diagnosticity of a particular element for the category is a direct
function of the number of exemplars that activate that element,
given that members of other categories do not produce the same
level of activation.

In this way, the notion of common elements offers a straight-
forward means to represent stimulus properties with different
levels of specificity, ranging from stimulus-specific properties, in
the form of elements that are unique to only one member of the
category, to category-specific properties, in the form of elements
that are common to most members of the category. Elements near
the category-specific side of the range can be used as the basis for
categorization. Elements that are peculiar to specific exemplars of
a category can be used as the basis for more fine-grained discrim-
inations among the individual category members.

It might seem that this idea takes us back to the starting point:
If one has no knowledge about the similarity relations among the
stimuli in a categorization experiment, then there is no way to
specify representations of them in terms of shared and specific
elements. What we show here is that, even if one assigns relatively
arbitrary representations to stimuli that do not capture the specific
similarity relations among them or among different categories,
then it is still possible to explain a great deal of what is known

about animal categorization by having representations that adhere
to a simple principle: Stimuli belonging to the same category
should have a higher likelihood of sharing elements than stimuli
belonging to different categories.

To capture this basic idea, our model represents all stimuli in a
categorization task through a large pool of elements that can either
be active or inactive when a stimulus is presented. Each of the
categories used in the task determines a different probability
distribution over the elements, so that the elements have a variable
probability of being active when a particular exemplar of the
category is presented. Because we know nothing about the simi-
larity relations among the different categories involved in a sim-
ulation, these distributions are generated through a completely
random process. The only requirement is to assign different prob-
ability distributions to different categories, capturing the principle
of category representation described in the prior paragraph.

Figure 2 presents a summary of the stimulus representation in
our model, whose properties can be described at three different
levels. At the first level, we have the specific representations that
are assigned to each stimulus in a categorization experiment. As
noted before, the presentation of a stimulus is assumed to activate
a small proportion of all of the elements in the pool. The bottom
part of Figure 2 shows five examples of stimulus representations
created from a pool of 10 elements. Common elements between
representations at this level determine the similarity between the
stimuli that they represent.

Categories comprise a large number of individual representa-
tions, one for each exemplar. If one had access to all of these
representations for one specific category, then it would be possible
to calculate the relative frequency with which each element is
sampled in that category, resulting in an empirical probability
distribution over the elements. This empirical distribution would

Figure 2. A schematic representation of the common-elements model of natural image classification that is
described in this article.
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approach the actual distribution determined by the category, from
which the observed individual exemplars were sampled. Thus, one
can think of different categories as represented by different prob-
ability distributions over elements, with the overlap among distri-
butions representing the similarity relations among categories.
This is the second level of description in our stimulus representa-
tion, exemplified in the top portion of Figure 2 as the probability
distribution from which the stimulus representations at the bottom
were generated.

For each category, an element in the pool can be specific either
to a particular exemplar or to the entire category. Whether an
element is specific to a particular stimulus or to an entire category
depends on how many exemplars in the category share this ele-
ment, which in turn depends on the sampling probability that this
element has in the category representation. Elements that have a
low, nonzero probability tend to be part of the representation of
one or only a few stimuli, carrying predominately stimulus-
specific information; as the sampling probability increases, the
stimulus specificity of the element decreases, and its category
specificity correspondingly increases.

Just as all of the stimuli are represented through the same pool
of elements, any category is also represented as a probability
distribution over the elements. If one had access to all of these
probability distributions, then it would be possible to calculate the
relative frequency with which each sampling probability is used
across categories. The final result would be the third level of
description in our stimulus representation: the distribution over the
sampling probabilities themselves, as exemplified in the top-left
portion of Figure 2 (note that the distribution shown here is rotated
counterclockwise, with probability density placed along the
x-axis). Because each sampling probability determines the level of
specificity/invariance for a particular element, we think of this
higher order distribution as a specificity distribution, which gives
information not about specific stimuli or categories but about the
general coding strategy used by the animal to represent the stimuli
involved in the categorization task. In the example shown in
Figure 2, across categories, low sampling probabilities are more
frequent than high sampling probabilities, meaning that the system
uses representations with many stimulus-specific elements but few
category-specific elements.

As suggested earlier, our model focuses on the highest level
description of the stimulus representation, simply ignoring the
similarity relations among categories and stimuli. Describing how
elements with varied levels of specificity gain control over behav-
ior is shown below to be adequate to explain an impressive number
of experimental results.

The only aspect of the stimulus representation that can be
manipulated in our model is the specificity distribution, which
determines the proportion of elements in the representations that
are stimulus-specific, category-specific, or anywhere between
these extremes. However, specificity can only be determined in
relation to a particular category, and the number of categories in
which each individual stimulus can participate is enormous. A
photograph of a person might lead to the identification of a single
individual or to its classification in the basic category people, in
the superordinate category mammal, or in the subordinate category
female. We wanted to give our model enough flexibility to permit
the possibility that different visual tasks might involve different
distributions of specificity for the representational elements. What

we needed was a way to represent the specificity distribution via a
function that could assume many different shapes; here, the beta
distribution represents a very good choice (Grinstead & Snell,
1997). The beta density function is defined by the following
equation:

B�a, b, x� � � 1

B�a, b�
xa�1�1 � x�b�1, if 0 � x � 1,

0, otherwise.
� .

(2)

In the context of our model, the variable x in Equation 2
represents the sampling probability or the specificity level. Equa-
tion 2 determines the likelihood with which this specificity level is
used in the category representations. The parameters a and b are
positive numbers, and B(a, b) is the beta function given by

B�a, b� � �
0

1

xa�1�1 � x�b�1dx. (3)

The beta density function is useful for our purposes because it
determines a family of functions that can assume one of several
possible shapes depending on the values of a and b. When a � b �
1, the function takes the form of a uniform density, with the
consequence that all of the specificity levels are equally likely in
the final representational scheme. This outcome is shown in Figure
3A. When the values of the parameters differ from 1, the repre-
sentations start being biased: exhibiting more stimulus-specific
than category-specific elements, more category-specific than
stimulus-specific elements, or anything between these extremes.

For example, if a �1 and b 	 1, as shown in Figure 3B, the
distribution is monotonically decreasing from 0 to 1; the conse-
quence is that stimulus-specific elements (which are related to a
low sampling probability) are more frequent than category-specific
elements (which are related to a high sampling probability). The
opposite trend is true when a 	 1 and b � 1, as shown in Figure
3C. The function has sufficient flexibility to exhibit almost any
other distribution in which one might be interested, including
nonmonotonic distributions with a peak at a particular sampling
probability (like the one shown in Figure 3D) or U-shaped distri-
butions (like the one shown in Figure 3E). Moreover, interpreting
the shape taken by the function in terms of category-specific and
stimulus-specific elements is straightforward.

The stimulus representations are generated from the model in
three steps. In the first step, a specificity function is chosen by
assigning values to the parameters in the beta distribution as
explained earlier. In our simulations with the model, we have been
successful in reproducing the qualitative aspects of empirical data
with many different shapes of the beta distribution, but the partic-
ular form that has produced the most satisfactory results is similar
to the one presented in Figure 3B. Critically, this distribution
produces a high number of exemplar-specific elements and a low
number of category-specific elements. Also important is that the
stimulus representations tend to be highly sparse; that is, each
stimulus activates only a small proportion of the elements in the
pool. Similar results might be obtained with the model if any other
monotonically decreasing function were used (such as exponential
or Gaussian functions).
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It is interesting to note that the kind of sparse coding that we
have found to be more useful in our simulations has been found in
several visual areas of the primate brain in response to natural
images (e.g., Baddeley et al., 1997; Foldiak & Young, 2002;
Olshausen & Field, 2004; Vinje & Gallant, 2000). Furthermore,
hierarchical models of human object recognition that incorporate
properties of the primate visual cortex also represent stimuli
through processing units that vary in their level of specificity and
invariance (Serre et al., 2005, 2007).

In the second step, the representation of each category in the
simulated experiment is generated by independently assigning a
random value between 0 and 1 to each element in the pool. The

process is biased by generating random numbers according to the
specificity distribution that is chosen in the first step; random
numbers following the beta distribution can easily be obtained
from numerical computing software packages such as MATLAB
(copyright The MathWorks, Inc.). The specificity distribution that
we chose in our simulations generated category representations
with many low sampling probabilities and almost no high sam-
pling probabilities. Beyond the constraints that are imposed by the
specificity distribution, the category representations are generated
in a completely random way and always using the same parameter
values, reflecting the fact that we make no assumptions about the
similarity relations among categories.

Figure 3. Some examples of the shape that the beta density function acquires with different values of
parameters a and b.
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In the third and final step, representations of all of the stimuli in
the experiment are generated from the distributions obtained in the
previous step. Representations of all of the stimuli belonging to the
same perceptual category are generated using the same probability
distribution, but it is not important which particular probability
distribution is assigned to which particular category. A random
process determines if each element is or is not activated by the
presentation of a stimulus. The random process is again biased by
the sampling probability of the element for a specific category by
generating a random number from a Bernoulli distribution with the
probability of success equal to the sampling probability of the
element. The sampling process is independent for each individual
element in the representation, with the consequence that the num-
ber of active elements is not fixed across different stimuli.

The framework presented here is essentially an extension of the
ideas of SST to the representation of categories instead of indi-
vidual stimuli. We have a pool of elements with an assigned
sampling probability, which, in SST, represents all possible in-
stances of a particular stimulus and, in our model, represents all
possible exemplars from a category. The representation of a par-
ticular experience with a stimulus is obtained in SST by randomly
sampling elements from the pool; here, the same sampling process
yields the representations of particular exemplars of a category.

From our theoretical perspective, these similarities are not triv-
ial; rather, they suggest that basically the same principles of
stimulus representation can be at work in learning situations of
apparently very different complexity. As recognized by SST, two
instances of a stimulus are probably never experienced in the same
way by an organism. Whether the relevant stimulus is a simple
light or a whole category of objects, the task of the organism is to
recognize which properties are invariant across the different in-
stances of a stimulus and which properties are specific to each
particular stimulus instance. The invariant properties help to gen-
eralize knowledge across different environmental situations,
whereas the specific properties help to make important distinctions
among similar situations that are linked to different consequences.

One important disparity between SST and our framework is that
in the former, the probability of sampling an element given a
stimulus is always set to either 0 or a fixed value, whereas our
model adds more flexibility by allowing this value to vary between
0 and 1. Another disparity lies in the learning rule that is used to
modify the association between each element and an outcome,
which is explained next.

Learning Rule

Following previous models in the common-elements tradition,
we propose that the associations between each element and an
outcome are updated according to an error-driven learning rule.
Specifically, we apply the Rescorla–Wagner learning rule de-
scribed in Equation 1, where Vij represents the strength of the
association between element i and response j.

Although the conceptualization of stimuli as collections of unique
and shared elements is the main contribution of our model—as it
offers a solution to the representation problem in modeling natural
categorization—adopting an error-driven learning rule is not trivial
because it radically changes the predictions of the model for most
experimental tasks. This learning algorithm permits us to explain
how category-specific and stimulus-specific elements acquire con-

trol over behavior in a discrimination task. Categorization learning
happens when category-specific elements acquire control over
behavior, whereas identification learning happens when stimulus-
specific elements acquire control over behavior. More importantly,
the rule is useful in explaining the dynamics of categorization
learning, that is, how the interplay between learning and general-
ization determines which elements in the representation gain or
lose associative strength across training. In our upcoming simula-
tions, this interactive aspect of the learning rule helps to explain
how performance in some categorization tasks is dominated by
categorization learning early in training, whereas identification
learning dominates later in training.

Adopting an error-driven learning rule is also important because
this kind of rule captures, at least partially, many of the principles
guiding associative learning in Pavlovian conditioning and other
conditioning situations. If the algorithm proves to be useful in
explaining natural image categorization as well, then we would
have important evidence concerning the generality of associative
learning principles.

Finally, we fully appreciate that there are several arguments
against the adequacy of both an elemental stimulus representation
and an error-driven learning rule for explaining simple associative
learning. We address some of these arguments in the General
Discussion section of this article. We have nevertheless chosen to
present a model with strong similarities to the widely known
Rescorla–Wagner model because this theory has a long tradition of
application to areas of research outside of Pavlovian conditioning
(Siegel & Allan, 1996) and because this theory’s formal properties
and relationship to models from other research areas and disci-
plines are widely known (Gluck & Bower, 1988; R. S. Sutton &
Barto, 1981; Widrow & Hoff, 1960). One of our goals is to show
how a quantitative model—built using ideas from traditional an-
imal learning theory—can explain several phenomena in natural
categorization with pigeons. We think of this as an initial proving
ground for the use of formal models in this area of research; we
thereby hope to highlight the key experimental questions that need
to be answered to gain a fuller understanding of the mechanisms
underlying animal and human categorization.

Choice Rule

Most categorization tasks involve an animal’s sorting several
different stimuli into two or more separate categories, each repre-
sented by a distinctively different response. In such forced-choice
procedures, subjects are often asked to give a single discrete
response to finalize the trial. To predict categorization behavior in
such situations, one needs to formalize a rule for the selection of
a response when a stimulus is presented, given the strength of the
association between that stimulus and all of the possible responses
on a trial. Here, we assume that the total associative strength
between a stimulus S and a response j equals the sum of the
associative strengths between all of the elements activated by the
stimulus and response j. That is,

VSj � �
i

Vij. (4)

VSj can also be interpreted as the expectation of reinforcement or
incentive value of response j given the presentation of stimulus S.

355COMMON-ELEMENTS MODEL OF CATEGORIZATION



After computing these incentive values for each response, choice
probabilities are obtained from them using a modification of
Luce’s ratio rule (Luce, 1959), known as exponential ratio (Wills,
Reimers, Stewart, Suret, & McLaren, 2000) or softmax rule (Bri-
dle, 1990). The main difference between Luce’s choice rule and
softmax is that, in the latter, the associative strengths are trans-
formed according to an exponential function before computing the
choice probability:

p�Rj/S� �
e
VSj

�
j

e
VSj
. (5)

The probability of choosing response Rj given the presentation
of stimulus S is computed by taking a transformation of its incen-
tive value and dividing it by the sum of the transformed incentive
values of each of the available responses. In this way, the rule
reflects the relative incentive value of response j given the presen-
tation of stimulus S. The exponential transformation constrains the
result to positive values that can be interpreted as probabilities; the
parameter 
 determines the decisiveness of the choice rule, with
higher values leading to stronger preferences for the choice with
the larger incentive value.

Several empirical and theoretical reasons motivated the use of
the softmax choice rule in our model. First, a relation like the one
proposed in Equation 5 holds between relative frequency of choice
and relative reinforcement value of each alternative in empirical
studies of operant behavior in the form of the matching law
(Herrnstein, 1961). Second, the ratio rule is often used in models
of human categorization (see Kruschke, 2008), making future
comparisons between such models and the present one easier to
perform if they are adapted in the future to the stimuli and
procedures of natural image categorization experiments. Finally,
softmax is equivalent to the Boltzmann exploration strategy used
in reinforcement learning models (Kaelbling, Littman, & Moore,
1996), whose formal properties have been and continue to be
explored in artificial intelligence research.

We do acknowledge that other choice rules might prove to be
more useful to explain some data patterns in the future. For
example, some human data do suggest that the ratio rule may not
provide a good description of choice in categorization tasks in-
volving more than two alternatives (Wills et al., 2000). However,
the version of the ratio rule that Wills et al. (2000) tested is not the
same choice rule that we present here (see Equation 8 below);
direct comparison between them has not yet been conducted.

Not all categorization experiments involve a selection among sev-
eral available responses as implied by Equation 5. In go/no-go pro-
cedures, a single response is reinforced in the presence of some
stimuli (go trials) and nonreinforced in their absence (no-go trials).
Furthermore, go/no-go tasks are usually free-operant procedures,
meaning that subjects are free to perform a response at any time and
reinforcement can be programmed to occur as a function of several
experimental variables, such as the number of responses or the time
elapsed since a prior event. This task contrasts with the discrete-trial
procedures discussed before, in which a single response determines
the end of a trial and the delivery of reinforcement.

The choice rule described by Equation 5 can be extended to
free-operant tasks following a line of reasoning first advanced by
Herrnstein (1970) to explain operant behavior as a function of rate

of reinforcement. In situations in which only one response is being
measured, an animal still faces a choice between performing this
response or any of the other available responses in the experimen-
tal environment, including simply doing nothing. If we express the
unknown incentive value of all such other responses as V0, then
choice probability in go/no-go tasks is described by the following
equation:

p�R/S� �
e
VS

e
VS � e
V0
. (6)

In this way, response probabilities in both choice and go/no-go
tasks can be seen to arise from the same choice process in which
the likelihood of a response equals its relative incentive value.
Because the value of V0 is unknown, it should be considered to be
another free parameter used by the model to simulate go/no-go
experiments. Nonetheless, the results of our simulations of go/
no-go experiments are a direct consequence of the associative
values that are predicted by the Rescorla–Wagner learning algo-
rithm; the new free parameter that is presented in Equation 6 is not
introduced here to provide a better fit of the model to the data but
simply to follow the theoretical motivation of using the same
choice mechanism for all of the categorization tasks.

The performance measure that is commonly used in free-operant
procedures is not response probability but response rate (number
of responses per time unit). We assume that response rates are
directly proportional to the probabilities that are computed via
Equation 6; thus, all of the simulation results are presented in terms
of response probabilities. However, if better fits to actual data need
to be obtained, then the following transformation can be used to
compute response rates:

Rate�R/S� � p�R/S�k, (7)

where k represents the asymptotic rate of responding or the total
number of responses that the animal can produce per time unit.

In more general terms, Equations 5 and 6 can be seen as
instantiations of the following response rule:

p�Rj/S� �
e
VSj

�
j

e
VSj � e
V0
. (8)

Note that V0 has no impact in a discrete-trial forced-choice
procedure because one of the responses being measured must be
produced to advance the trial. Under those circumstances, Equa-
tion 8 is equal to Equation 5. However, V0 might play a role in
free-operant choice procedures, which to date have not been used
in the study of categorization behavior.

Application to Previous Research in Natural
Categorization by Pigeons

We now present the simulated results of several experiments,
which represent a large sample of the most important findings
concerning the conditions that foster effective learning and transfer
of open-ended categories in pigeons. In these simulations, we did
not attempt to fit the free parameters of the model to the data or to
perform a systematic search of the parameter space to find those
parameter values that would yield the most accurate predictions.
Rather, we performed an unsystematic search for the parameters
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that would give good results for one particular experiment (Was-
serman et al., 1988, Experiment 1), and we then used those
parameters in all of the other simulations. Our primary aim was to
document the ability of the model to reproduce the behavioral
patterns that were observed in the experimental data, even with the
constraint of using the same parameters in every simulation.

The parameters a and b in the beta distribution were fixed to the
values of 1.00 and 4.50, respectively, which produced a function
like that depicted in Figure 3B. The value of learning rate param-
eter � was set to 0.02 for reinforced trials and to 0.01 for nonre-
inforced trials. This disparity follows the original Rescorla–
Wagner formulation and is based on the idea that the presentation
of an outcome is more salient than is its absence. The value of
learning rate parameter � was set to 0.10; this value should not be
deemed to be another free parameter in the model, as it simply
scales the result of Equation 1, something that could be obtained
by changing the � parameters. Finally, the value of parameter 
 in
Equation 8 was set to 3.00, and the value of V0 was set to 0.00 in
simulations of the choice experiments and to 0.50 in simulations of
the go/no-go experiments.

All of the simulations were performed in an attempt to reproduce
the training conditions in the original studies as accurately as possible
in terms of trial, block, and session structure as well as trial random-
ization and other experimental procedures. A complication in simu-
lating the results of animal studies is that, in most, there is no direct
feedback about the correct response for a trial, as in the human
counterpart. The only feedback given to pigeons is the presence or
absence of food reinforcement; this feedback provides complete in-
formation in case of a correct trial, but it provides ambiguous infor-
mation in the case of an incorrect trial if more than two choices are
available. Most experiments give unambiguous feedback to the pi-
geon by using one or more correction trials after every incorrect
response, which are repeated until the bird makes the correct response
and receives food reinforcement. We did not attempt to simulate all of
these procedural details; every trial simply included the presentation
of a stimulus, the prediction of the model, and feedback to the model
regarding the correct response on that trial.

Because the stimulus representations in the model were gener-
ated randomly, for each simulation, we present the average of 10
runs of the model, each using different probability distributions
over elements and different sampled representations for individual
stimuli. Note that this averaging process generates learning curves
that are much smoother than the actual data, but the results of each
individual simulation show a pattern of random variation similar to
that observed in the data from individual subjects.

Category Learning and Transfer to Novel Exemplars

The first phenomenon that must be explained by any model of
categorization is the acquisition of such behavior. In one experiment,
Bhatt and colleagues (1988, Experiment 1) presented pigeons with 10
photographs from each of four real-world categories: cats, flowers,
cars, and chairs. After an image was presented to the pigeon, a
response to one of the four available response keys was permitted.
Each key was the correct response for one of the four categories.
Pigeons were reinforced with food when they chose the correct
response key; they had to repeat the trial if they chose an incorrect
key. Figure 4 depicts the results of a simulation of this experiment.
Discrimination performance with the training exemplars increased

monotonically as a function of the number of training trials, showing
the negatively accelerated form that is typically produced by error-
correcting models of associative learning and also found in studies of
categorization by pigeons (Bhatt et al., 1988).

A more interesting aspect of pigeon categorization performance
is the transfer of discriminative behavior to novel exemplars. This
transfer is interesting because it is typically interpreted as evidence
of open-ended categorization (Herrnstein, 1990); thus, transfer
represents a test for the presence of a behavioral phenomenon that
goes beyond mere identification. The typical pattern of results in
such generalization tests is reliable discrimination performance
with novel images, but at a lower level of accuracy than to the
original training stimuli (Bhatt et al., 1988). The same pattern can
be observed in Figure 4, which shows simulated discrimination
performance with novel test stimuli.

The above-chance level of transfer to new exemplars is the result of
the associative value that is acquired by the category-specific ele-
ments. Recall that these elements are common to the representation of
several of the stimuli in a category; therefore, their association
with the correct response will frequently be strengthened during
training. This frequent strengthening counteracts the lower number
of category-specific elements than stimulus-specific elements in
each of the hypothesized stimulus representations, thereby produc-
ing a higher rate of acquisition of category-specific associative
strength than of stimulus-specific associative strength. Neverthe-
less, stimulus-specific elements, which have a lower likelihood of
contributing to performance to the novel test exemplars, also
acquire associative strength during training; in this way, the model
produces the generalization decrement that is typically observed in
tests with novel exemplars.

Effects of Category Size

One of the most straightforward experimental manipulations
that affects category learning and generalization involves changes
in the number of exemplars in each trained category. In one
experiment (Wasserman & Bhatt, 1992; also described in Wasser-
man, 1993), three groups of pigeons were given 48 daily training
trials on the four-choice task. In Group 1, each of the four cate-

Figure 4. Simulated results of Bhatt, Wasserman, Reynolds, and
Knauss’s (1988) experiment in categorization learning and transfer to
novel exemplars of the trained categories.
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gories was composed of only one exemplar, seen 12 times in each
daily session. Group 4 was given four different photographs from
each category, each repeated three times in each daily session.
Group 12 was given 12 different photographs from each category,
each shown only one time in each daily session. There were two
important results of this study.

First, the speed of learning was inversely related to category
size. It took about five daily sessions to reach a criterion of 70%
correct for those pigeons trained with one exemplar, about 10
sessions for those trained with four exemplars, and more than 20
sessions for those trained with 12 exemplars. The top panel of
Figure 5 shows the predictions of the model for the three training
conditions in the Wasserman and Bhatt (1992) study, plotted as the
probability of making a correct choice across trials. The original

finding was correctly reproduced: Learning speed decreased with
increases in category size.

The correct prediction of the model is the consequence of the
benefit in learning from the repetition of the same stimuli in tasks
with lower category sizes. On the first trial of learning with
Category Size 1, all of the elements in the representation acquire
some associative strength. On the second trial, when the same
stimulus is presented, the response will be determined by all of the
associative strength previously acquired by these elements. When
category size is increased well beyond one item, a new exemplar
is likely to be presented on the second trial with a particular
category; the response on this trial will be determined by the
associative strength acquired by the category-specific elements
only, not by the stimulus-specific elements, which are likely to be
presented for the first time. The associative strength acquired by
the stimulus-specific elements will start to contribute to choice
responding only when the individual exemplars are repeated; at
that point, a subject trained with a lower category size will show
the cumulative benefits of several previous training trials with the
same exemplar.

The second relevant result observed by Wasserman and Bhatt
(1992) was that the amount of generalization to novel exemplars
was a direct function of category size, an effect reported by other
authors using different procedures (Kendrick, Wright, & Cook,
1990). Pigeons trained with only one exemplar exhibited general-
ization performance in the test only slightly above 25% correct,
those trained with four exemplars about 45% correct, and those
trained with 12 exemplars over 55% correct. The results of our
simulation of testing performance are illustrated in the bottom
panel of Figure 5. Final discrimination performance with training
exemplars proved to be an inverse function of the number of
exemplars in each category, a consequence of the disparity in
learning rate discussed above. More importantly, there was a direct
relationship between the number of exemplars in each category
and the extent of generalization to new test stimuli.

Remember that generalization is determined by the amount of
associative strength that is acquired by the category-specific ele-
ments because the testing items are novel and the stimulus-specific
elements cannot contribute to performance. A larger category size
increases the likelihood of including the same category-specific
element as part of the representation of several training exemplars.
If more training exemplars activate the same category-specific
element, then that element acquires associative strength at a higher
rate, quickly blocking the acquisition of associative strength by the
stimulus-specific elements. Because generalization of performance
to novel exemplars depends on the category-specific elements, if
they acquire more of the available associative strength, then gen-
eralization will be higher. Moreover, a larger category size also
increases the likelihood of novel testing items activating the ele-
ments that are associated with the correct response during train-
ing—that is, it increases the likelihood that a test stimulus will
have a representation that is similar to one or more of the training
stimuli—also contributing to higher generalization performance.

Effect of Stimulus Repetition

Bhatt et al. (1988, Experiment 3) found that pigeons can learn to
categorize photographs of natural stimuli even when the individual
photographs are never repeated. According to the model presented

Figure 5. Simulated results of Wasserman and Bhatt’s (1992) experiment
assessing the effect of category size on category learning. The top panel
shows the probability of correct choice across training and allows the
comparison of learning rates for different category sizes. The bottom panel
compares final performance to the training stimuli (black columns) and to
the novel test stimuli (grey columns).

358 SOTO AND WASSERMAN



here, this learning is supported by the category-specific elements
that are repeated on every trial, even when the specific pictorial
stimuli that are shown are different on every trial.

Bhatt and colleagues (1988, Experiment 4) conducted a second
experiment in the same study, in which a single group of pigeons
was trained to discriminate the same 10 photographs of each
category on odd-numbered days and to discriminate 10 novel
exemplars of those categories on even-numbered days. The result
was higher accuracy in the classification of repeating stimuli
across training. Performance with repeated stimuli rose from 29%
correct in the first four training sessions to 85% correct in the last
four sessions; performance with nonrepeated stimuli rose from
26% correct in the first training sessions to 66% correct in the last
sessions.

The results of our simulation are shown in Figure 6. The
predictions of the model fit the experimental results, properly
reproducing the observed disparity in learning rate that develops in
training with repeating and with nonrepeating sets of stimuli. This
disparity reflects the fact that only category-specific elements can
support learning with nonrepeating stimuli, whereas both stimulus-
specific elements and category-specific elements can jointly sup-
port learning with repeating stimuli.

Pseudocategorization

A very important question regarding perceptual categorization
concerns the possibility that pigeons recognize the perceptual
coherence among members of the same category even when they
are not required to do so by the training procedure. A second
possibility is that pigeons independently represent information
about each exemplar and associate such information with the
correct response.

Evidence for the former notion comes from studies in which true
category learning is compared with pseudocategory learning,
pseudocategories being arbitrary sets of stimuli with no perceptual
resemblance to each other. Most studies (Herrnstein & de Villiers,

1980; Wasserman et al., 1988) have found that pigeons learn to
sort photographs into pseudocategories much more slowly than
into true categories involving the same pictures (but see Kendrick
et al., 1990). Evidence for the latter notion comes from the fact that
pseudocategories are learned at all; such learning can only be
achieved if pigeons are able to perceive visual properties that are
idiosyncratic to each stimulus and base their discriminative re-
sponses on these properties.

Figure 7 depicts the results that are predicted by the model when
it is trained under the conditions arranged by Wasserman et al.
(1988, Experiment 2). Both curves show categorization learning
with the same set of 20 stimuli in each of four categories; the only
procedural disparity is that in the pseudocategory group, the stim-
uli were randomly assigned to arbitrary groups sharing the same
outcome (five stimuli in each category were assigned to each of the
four pseudocategorization sets), whereas in the true category
group, the training categories coincided with the four human
language groupings.

In the original study, learning of the true categorization task was
quick and reached an asymptote of almost 80% correct, whereas
learning of the pseudocategorization task was much slower and
reached only about 40% correct at the end of the experiment. The
model correctly predicts faster learning of the true categorization
task; in this condition, the category-specific elements are consis-
tently associated with the same outcome. In the pseudocategori-
zation task, the category-specific elements have much lower in-
formational value in predicting the outcome of a trial, as they are
equally likely to be associated with each of the four categories.
Under these conditions, performance does slowly improve with
training, but this improvement is presumably ascribable to the
associative strength acquired by the stimulus-specific elements.

Feature-Positive and Feature-Negative Effects

Following the methods of the pioneering experiment by Herrn-
stein and Loveland (1964), several studies in pigeon natural cate-
gorization have used a go/no-go procedure, in which responses to
photographs containing an exemplar from the category are rein-
forced and responses to photographs not containing an exemplar
from the category are not reinforced. A variation of this procedure
involves presenting the same background information in both
category-present and category-absent slides to make it difficult for
the pigeons to solve the task by relying on background information
alone. In this matched background task, exemplars of the category
become a feature in the images; this feature can signal the avail-
ability of reinforcement after a response is performed, in a feature-
positive discrimination, or it can signal the absence of reinforce-
ment after a response is performed, in a feature-negative
discrimination (Jenkins & Sainsbury, 1970; Sainsbury, 1971).

Some research has suggested that pigeons learn decidedly dif-
ferent things in the feature-positive and feature-negative tasks
(Aust & Huber, 2001; Edwards & Honig, 1987). Perhaps the most
basic disparity is that feature-positive discriminations are learned
faster than feature-negative discriminations (Edwards & Honig,
1987).

Consider the Edwards and Honig (1987) experiment. It included
photographs of people on background scenes as well as photo-
graphs of the same background scenes without people; as noted
above, this is a matched discrimination. One problem with simu-

Figure 6. Simulated results of Bhatt, Wasserman, Reynolds, and
Knauss’s (1988) experiment on the effect of stimulus repetition on cate-
gorization learning.
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lating this kind of experiment involves separating the portion of
the stimulus representation that represents the background from
the portion of the stimulus representation that represents the peo-
ple. This chore is particularly difficult in our model, in which each
fragment of a photograph cannot be directly linked to a particular
portion of the stimulus representation. So, it was necessary to take
further steps to simulate experiments involving photographs with
matched backgrounds.

To do so, we assumed that information about the background of
an image is coded through the stimulus-specific elements in the
stimulus representation, especially those with very low sampling
probabilities. The reason behind this assumption is that the back-

ground of an image provides the most idiosyncratic information in
any categorization task; thus, these background features should be
represented through the most stimulus-specific elements. On the
other hand, the objects that are presented over that background—
the category exemplars and their features—are more similar to
each other across different images; thus, they should be repre-
sented by more category-specific elements.

Figure 8 shows a diagram of the procedure that we used to
create representations of the photographs with a matched back-
ground. The left side of the diagram shows how we created the
representation for photographs of backgrounds without people.
The first step was to create a sampling distribution for background
photographs by assigning a uniformly low sampling probability to
each of the elements in the pool. A uniform distribution was
chosen under the assumption that backgrounds do not convey any
category information that is useful in the tasks to be simulated in
this section. Thus, all of the elements in the pool should have a
similar likelihood of being sampled to form the representation of a
background photograph. The sampling probability that was assigned
to each element was set to the mean probability in the people distri-
bution over elements, which allowed us to obtain representations in
which the numbers of active elements were similar to those in the
people category but in which the active elements were more
randomly distributed across the pool. These representations (Step
2 in Figure 8) were used to directly simulate the presentation of the
background alone during training.

The rest of the diagram in Figure 8 shows how we created
representations of the photographs that included people over a
given background. To solve this problem, we generated represen-
tations for images including people in the same way as in all of our
other simulations. Thus, the third step in the process was to create
a sampling distribution for the category of photographs including
people. However, the representation of the category people was

Figure 7. Simulated results of Wasserman, Kiedinger, and Bhatt’s (1988)
experiment comparing learning rates for categorization and pseudocatego-
rization tasks.

Figure 8. Diagrammatic description of the procedure used to create representations of the stimuli that involve
matching backgrounds. The main disparity between the matched representations is in the presence or absence of
information about a category exemplar (see text for details).

360 SOTO AND WASSERMAN



split into two parts, depending on whether an element had a
sampling probability below or above a threshold value of 0.1. In
Figure 8, this arbitrarily chosen threshold is represented by a
dashed line in the distribution for the category people. Elements
with a sampling probability above the threshold are assumed to
convey information about the presence of people in the images.
These elements are shown in black in the diagram. Elements with
a sampling probability below the threshold are assumed to be
uninformative about the presence of people in the images; that is,
they include the background information in the representation.
These elements are shown in grey in the diagram; taking them out
of the representation (assigning them a value of zero) would be
more or less equivalent to removing the background in an image
including people, thus generating a people-only representation
(Step 4 in the diagram of Figure 8).

The fifth and final step that is shown in Figure 8 involved
adding up the background-only representation generated in Step 2
with the people-only representation generated in Step 4. This
process would be analogous to superimposing the fragment of an
image showing people over a different background image. This
representation, together with the background-only representation
that was generated in Step 2, was used to represent photographs
with matched backgrounds.

Of course, the representations that were generated this way can
only be thought of as approximations to the representations that
would be used in a matched discrimination, but they do have a
theoretical foundation within our framework. The only arbitrary
aspect in this process is the threshold that is chosen to classify
elements as informative or uninformative about the presence of a
category member. We found that the results of our simulations are
robust across variations of this threshold value.

Figure 9 plots the learning curves that were obtained from our
model when it was exposed to training conditions similar to those
that were described by Edwards and Honig in their experiment
involving matched feature-positive and feature-negative discrimi-

nations (Edwards & Honig, 1987, Experiment 1). The original
experiment also included a pseudocategorization condition, which
provided a benchmark for how fast the pigeons could learn the task
if they were simply memorizing each slide and its relation with
reinforcement. The feature-positive discrimination was learned
faster than the other two tasks, but the feature-negative discrimi-
nation was not learned faster than the pseudocategorization task.
Depending on the stimuli used, performance on the feature-
positive discrimination reached a discrimination ratio of from .65
to .77; performance on the feature-negative and pseudocategori-
zation tasks was barely above .50 across training. Figure 9 shows
that the model correctly predicts the qualitative pattern of results,
although it performs a bit better than the pigeons on the feature-
negative and pseudocategorization tasks.

In the feature-positive condition, the category-specific elements
are presented often, and they very quickly acquire associative
strength (on reinforced people-plus-background trials). The dis-
crimination is complete when the associative strength that is ac-
quired by the stimulus-specific background elements is extin-
guished (on nonreinforced background-alone trials); this latter
process proceeds more slowly because these stimulus-specific
background elements are occasionally reinforced.

In the feature-negative discrimination, the reinforced back-
ground stimuli are slower to acquire excitatory associative
strength. Recall that the background stimuli do not share any
category-specific elements; they involve only stimulus-specific
elements. Therefore, the acquisition of excitatory associative
strength here occurs more slowly than when such category-specific
elements are presented and reinforced frequently, as in the feature-
positive discrimination. Moreover, the elements representing back-
grounds are also nonreinforced on some trials, further slowing
learning.

In their Experiment 4, Edwards and Honig (1987) studied the
effect of using the same or different backgrounds for slides that did
or did not include category information. The procedure involved a
between-groups comparison of a feature-positive discrimination, a
feature-negative discrimination, and a pseudocategorization con-
trol for memorization. More importantly, Edwards and Honig
exposed each pigeon to slides that were both matched and non-
matched in their background information, alternating both sets in
consecutive sessions.

The top section of Figure 10 shows the complete pattern of
results for our simulation of this experiment. To more easily
explain the successes and shortcomings of our simulation, the
same results are also grouped according to the types of stimuli that
were used during training (matched vs. nonmatched; see the mid-
dle panels of Figure 10) and the discrimination to which each
group was exposed (feature-positive, feature-negative, and
pseudocategorization; see the bottom panels of Figure 10).

As to the comparison between matched and nonmatched stimuli,
in the original experiment, the nonmatched procedure led to an
attenuation of the feature-positive effect that was previously ob-
served with the matched procedure. This result is observed in the
simulated results that are presented in the middle panels of Fig-
ure 10, where the disparity between the feature-positive and the
feature-negative learning curves is larger in the matched than in
the nonmatched procedure. This disparity arises because partial
reinforcement of the common backgrounds in the matched tasks

Figure 9. Simulated results of Edwards and Honig’s (1987) Experiment
1, which compared learning rates of feature-positive and feature-negative
categorization tasks with images using matched backgrounds (see text for
details).
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slows learning in the feature-negative discrimination more than in
the feature-positive discrimination.

To understand this result, note that mastery of any of these
discriminations requires the acquisition of excitatory associative

strength by the elements that get consistently reinforced and the
acquisition of inhibitory associative strength by the elements that
get consistently nonreinforced. More importantly, excitatory learn-
ing has to occur earlier than inhibitory learning because, according

Figure 10. Simulation of Edwards and Honig’s (1987) Experiment 4, which involved a factorial design with feature-
positive and feature-negative discriminations using both matched and nonmatched backgrounds (see text for details).
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to the Rescorla–Wagner learning rule, inhibitory learning only
happens in an excitatory context (i.e., only when there is some-
thing to inhibit). With all of this in mind, note that in a feature-
positive discrimination, whether matched or nonmatched, excita-
tory learning occurs quickly from the beginning of training
because of the consistent and repetitive reinforcement of category-
specific elements. The main effect of partial reinforcement of the
backgrounds in the matched condition is to slow inhibitory learn-
ing late in training. In a feature-negative discrimination, the ac-
quisition of excitatory strength depends on the background ele-
ments, which are the only ones that are present on reinforced trials.
Partial reinforcement of the backgrounds in the matched condition
has the effect of slowing excitatory learning at the outset of
training and, as a consequence, inhibitory learning later in training.

The empirical data also showed that, for the nonmatched stim-
uli, performance on both feature-positive and feature-negative
discriminations was similar and higher than performance on the
pseudocategorization task, with an advantage of the feature-
positive discrimination over the feature-negative discrimination
early in training, a relation that was later reversed. All of these
results are also observed in the simulated results (see the middle
panels of Figure 10). On the contrary, for the matched stimuli,
performance on the feature-negative discrimination and the
pseudocategorization task was lower than on the feature-positive
discrimination, a pattern that was also observed in the early stages
of our simulation. Note that our simulation shows an advantage of
the feature-negative discrimination over pseudocategorization in
later stages of training, which was not observed in the experiment.
This result is difficult to interpret in light of the available data, in
which all of the matched tasks supported rather low levels of
performance like those observed only early in training in our
simulation.

As to the comparison between matched and nonmatched tasks
within each type of discrimination, Edwards and Honig (1987)
observed that all of the discriminations were acquired more rapidly
with nonmatched stimuli than with matched stimuli. These authors
also highlighted the fact that the feature-negative discrimination
group showed the greatest disparity in performance between prob-
lems. The graphs in the bottom section of Figure 10 illustrate that
our model correctly predicts faster acquisition of all of the non-
matched discriminations than of the matched discriminations. This
disparity arises because, in matched discriminations, the same
background is presented in both people-present and people-absent
photographs, leading to partial reinforcement of the elements rep-
resenting the background; this process slows learning in the
matched condition, but it is absent in the nonmatched condition.

The main aspect of the experimental data that is not reproduced
by our simulation is that performance in all of the nonmatched
conditions exceeded that in all of the matched conditions through-
out training. It can easily be observed in the top panel of Figure 10
that our simulation does not capture this aspect of the data: Not all
of the nonmatched conditions, represented by open shapes, are
above the matched conditions, represented by solid shapes. Only
the feature-positive and feature-negative discriminations differ in
this way late in training.

We suspect that this failure to account for this aspect of the data
is due in part to our inability to more reliably reproduce the
disparities between the matched and nonmatched stimuli. The
method used here to represent stimuli sharing a background (see

Figure 8) takes stimulus-specific elements out of one representa-
tion with the goal of extracting its background information. Such
a procedure does not make a distinction between the stimulus-
specific elements actually representing the background of a pho-
tograph and those representing specific properties of a category
exemplar; thus, our simulation should be considered only a rough
approximation of the way animals actually represent matched
stimuli. Despite this limitation, our model is still able to reproduce
several of the most salient disparities between conditions found in
the original experiment by Edwards and Honig (1987).

As well, nonsystematic explorations of the parameter space of
our model suggest that it is possible to reproduce the ordinal
arrangement of conditions found by Edwards and Honig (1987) in
the later stages of training, which are data used by these authors in
their statistical analyses. Specifically, higher values for � (.60) and
the cutoff parameter used to build matched representations (.35)
yield such results. An even more systematic exploration of the
parameter space is necessary to determine whether it is possible to
offer a better fit of the model to the data.

In a more recent study, Aust and Huber (2001, Experiment 3)
reported evidence that feature-positive and feature-negative dis-
criminations also differ in the degree to which discriminative
behavior generalizes to untrained stimuli. In this experiment, after
nonmatched feature-positive and feature-negative training, pigeons
were given several combinations of trained and novel category
exemplars placed on trained and novel backgrounds, with the goal
of pitting category information against background information.
The more interesting testing stimuli involved combinations of
category exemplars and backgrounds that involved conflicting
information. These combinations included familiar exemplars on a
familiar background (which involved contradictory information
acquired through training) and novel exemplars on a familiar
background (which put into conflict information acquired in train-
ing about the backgrounds and any general learning about the
category). Familiar exemplars on a novel background were in-
cluded as a control, because they did not present conflicting
information.

The key result was that, for pigeons trained on the feature-
positive procedure, responding to all of the testing stimuli was
generally similar to responding to the training exemplars of the
relevant category. Because the testing stimuli included information
about both the trained category and various backgrounds, this
result suggests that discriminative performance was controlled
mainly by categorical information in the images, with lesser be-
havioral control exerted by background information. On the other
hand, pigeons trained on the feature-negative procedure did not
show such robust generalization; rather, their responding was
intermediate to that between the positive and negative training
stimuli.

Figure 11 shows the simulated results for both the trained
stimuli and the untrained (testing) stimuli. The y-axis represents
the standardized response level, computed as the mean response
probability acquired by stimuli in that testing condition over the
mean response probability for the trained stimuli. A standardized
response level equal to 1.00 indicates no preference to classify a
stimulus as either a member or a nonmember of the category. The
standardization process was used to make the simulated results
more readily comparable to the data published by Aust and Huber
(2001). In the feature-positive condition, a value higher than 1.00
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indicates a tendency to classify the stimulus as a member of the
category, whereas a value lower than 1.00 indicates a tendency to
classify the stimulus as a nonmember of the category. The reverse
is true for the feature-negative condition.

The general pattern of results is very similar to the empirical
data. For the simulated feature-positive condition, the standardized
response level of the testing stimuli is always higher than 1.00,
indicating that these testing stimuli are classified as category
members. In the original data, this measure of performance was
between 1.50 and 2.00 for all stimulus types. The same level of
categorical control was not found in the feature-negative condition,
in which the testing stimuli showed a more intermediate level of
standardized response level. In the original data, the standardized
response rate was between 0.75 and 1.25 for all stimulus types in
the feature-negative condition.

In the feature-positive discrimination, a high level of excitatory
associative strength is acquired by the category-specific elements,
which are presented and reinforced very often (on feature-plus-
background trials). The background representations presented on
nonreinforced trials have their active elements more uniformly
distributed in the pool, so the likelihood of sampling a category-
specific element is not very high (on background-only trials).
When one of the category-specific elements is activated on these
trials, all of the other elements in the representation acquire inhib-
itory associative strength in equal amounts. The final result is that
excitatory associative strength converges mostly on a small group
of category-specific elements, whereas some small amount of
inhibitory associative strength is spread among all of the other
stimulus-specific elements. This distribution of excitation and in-
hibition is transferred to the test stimuli, so that when an exemplar
of a person is presented on a novel or a familiar background, the
presence of highly excitatory category-specific elements produces
standardized associative strength scores that are higher than 1.00.

The learning process in the feature-negative discrimination is
different because here the more distributed stimulus-specific back-
ground representations are reinforced, which allocates excitatory
associative strength more or less equally among all of the elements

in the pool. When the more localized representations of category
exemplars are presented, only a subgroup of these excitatory
elements in the pool is sampled and a small amount of inhibition
is allocated, mostly to the category-specific elements. This inhibi-
tion does generalize to the test stimuli, but so too does the exci-
tation that is widely spread across the pool of elements as a
consequence of the reinforcement of stimulus-specific background
representations. The net result is a level of performance that is
generally intermediate between those shown to the reinforced and
the nonreinforced training stimuli.

One aspect of the data that were reported by Aust and Huber
(2001) that is not captured by the simulation is that pigeons’
performance with test stimuli in the feature-positive condition did
not differ significantly from performance with stimuli reinforced
during training. Our simulation predicts a generalization decre-
ment for all test stimuli. This prediction reflects the stimulus
representation of our model and is consistent with the results of
numerous reports of this effect in the literature (e.g., Bhatt et al.,
1988; Kendrick et al., 1990; Wasserman, 1993). We suggest that it
would be hasty to conclude that Aust and Huber’s results consti-
tute an exception to this empirical finding, especially because that
conclusion would be based on a null result obtained with only two
pigeons.

As to specific disparities in performance among the test stimuli,
our simulation reproduces the ordinal relations found in the
feature-positive condition, but the magnitude of one difference is
exaggerated. Specifically, the model predicts a substantially lower
level of responding for novel exemplar–familiar background stim-
uli that was not observed in the empirical data. In the feature-
negative condition, the ordinal relations among the test stimuli are
not reproduced by our simulation, mainly because performance
with trained exemplar–novel background stimuli is predicted to be
slightly below 1.00, whereas in the empirical data it is slightly
above 1.00.

Aust and Huber (2001) reported no consistent disparities in
performance to these various test stimuli; thus, the disparities that
are predicted by our model are again compared to a null result

Figure 11. Simulated results of Aust and Huber’s (2001) categorization study of feature-positive effects on
generalization performance to novel exemplars of the trained category.
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obtained with a very small number of pigeons. Furthermore, Aust
and Huber did not test whether performance with their stimuli was
significantly above or below 1.00.

In conclusion, our model is able to reproduce the most important
results in Aust and Huber’s (2001) experiment: generalization of
categorization learning in a feature-positive discrimination and the
absence of such generalization in a feature-negative discrimina-
tion. The model predicts some disparities among test stimuli that
were not found in the data, but it is difficult to draw a conclusion
based on null results from a test entailing low statistical power.

Within-Category Stimulus Generalization

Some researchers have proposed that animals’ categorization
behavior is the direct result of perceptual mechanisms (Astley &
Wasserman, 1992; Herrnstein & de Villiers, 1980). Members of
the same class of objects are directly perceived to be more similar
to each other than to members of other classes of objects, which in
turn is the basis for the stronger generalization of responding
within the category than across categories.

To test this hypothesis, Astley and Wasserman (1992, Experi-
ments 1 and 2) conducted a study in which pigeons were first
trained to receive food reinforcement for pecking several different
photographs from each of four categories. In their first experiment
(Condition 1S�), pigeons during discrimination training kept re-
ceiving food for pecking one of the photographs but not for
pecking any of the other photographs. These nonreinforced pho-
tographs were composed of a set of 12 images from the same
category as the reinforced stimulus plus 12 images from each of
three other categories. Extinction of responding should have been
slower for negative stimuli from the same category as the positive
stimulus if these stimuli were directly perceived to be more similar
to each other than to members of the other three categories. In a
second experiment (Condition 12S�), 12 different exemplars of
the target category were reinforced during discrimination training
instead of only one exemplar.

The results were presented in terms of two behavioral measures:
the overall discrimination ratio (ODR) and the categorical error
ratio (CER). The ODR is a measure of the level to which response
rate to the reinforced stimuli was higher than response rate to all of
the negative stimuli; it showed that discrimination learning was
faster for pigeons trained with only one photograph as the positive
stimulus than for pigeons trained with 12 photographs as the
positive stimuli, with both groups reaching comparably high levels
of performance at the end of training (ODR higher than .90). The
CER is a measure of the level to which the response rate to the
negative stimuli from the same category as the reinforced pictures
exceeds the response rate to the negative stimuli from the three
different categories. The CER approaches 1.00 if all of the responses
to the negative stimuli are allocated to the reinforced category, and it
approaches .25 if responses are evenly distributed across the four
categories. This CER measure rose slightly and irregularly over
.25 for pigeons trained with only 1 reinforced exemplar, whereas
there was a more marked increase for pigeons trained with 12
different reinforced exemplars. The measure seemed to reach an
asymptotic level in both groups between six and 10 sessions of
training, reaching a value higher than .50 for pigeons trained with
12 exemplars and about .40 for pigeons trained with one exemplar.
With further training, the CER fell slightly in both cases.

Astley and Wasserman (1992) interpreted this pattern of results
as evidence of greater generalization of responding to members of
the same category, consistent with the proposal that perceptual
mechanisms underlie the categorization of photographs by pi-
geons. The low level of within-category generalization observed in
the 1S� condition was explained as the result of perceptual
disparities among members of the same category. With only one
reinforced stimulus, the chance of that one stimulus resembling the
12 negative stimuli from the same category would be much lower
than the chance that one or more of 12 reinforced stimuli would
resemble the 12 negative stimuli from the same category.

Perceptual coherence among members of the same category is
the most important principle underlying our model’s stimulus
representation; therefore, the model has no problem reproducing
the data reported by Astley and Wasserman (1992). We ran a
simulation of the two previously described experiments and com-
puted the two behavioral measures reported in the original study.
The results are portrayed in Figure 12, with ODR plotted in the top
panel and CER plotted in the lower panel. The model reproduced
the key experimental results: (a) There was faster discrimination
learning in the 1S� condition than in the 12S� condition accord-
ing to the ODR, and (b) the CER rose more markedly in the 12S�
condition than in the 1S� condition. Although not shown in
Figure 12, the model also predicts that with enough training, the
ODR for both groups should reach similar asymptotic levels and
that the CER in both groups should quickly reach its highest point
(higher for the 12S� condition) and fall slowly with further
training. Thus, the model captures the full pattern of data observed
by Astley and Wasserman at a learning rate comparable to that
shown by the pigeons.

The mechanisms underlying the effect of category size on the
rate of discrimination learning have already been explained; there-
fore, we focus on the CER effect. During baseline training, all of
the stimuli are reinforced, and associative strength is allocated to
each of the presented elements. In discrimination training, the
elements representing the S� retained most of their associative
strength due to continuing reinforcement, whereas the associative
strengths of all of the other elements was extinguished. Thus,
disparities in response rate among the nonreinforced stimuli were
due to differences in the proportion of elements that they shared
with the reinforced stimuli. Because stimuli belonging to the same
category have a higher likelihood of sharing elements than do
stimuli belonging to different categories, response rate was higher
to the negative stimuli belonging to the same category as the
positive stimuli. This effect is clearly evident in the 12S� condi-
tion, where larger category size provides a greater opportunity to
sample and reinforce category-specific elements supporting gen-
eralization to other exemplars of the same category. The same is
not true in the 1S� condition, where the same small group of
elements is repeatedly presented and reinforced. Just as proposed
by Astley and Wasserman (1992), the results of their experiments
should be the direct consequence of the principle of perceptual
coherence in natural categories that we formalized in the model.

J. E. Sutton and Roberts (2002) proposed a different interpre-
tation for the results of Astley and Wasserman (1992). Sutton and
Roberts suggested that pigeons do not immediately perceive ob-
jects in the same category to be more similar to one another than
to members of other categories; rather, the process of differential
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reinforcement leads them to direct their attention to disparities
among the pictures.

To test this hypothesis, J. E. Sutton and Roberts (2002, Exper-
iment 2) trained pigeons to peck 20 exemplars in one category to
obtain reinforcement, but without any other training trials involv-
ing nonreinforcement of another category. Without the require-
ment of discrimination performance, the pigeons did generalize
their pecking behavior to novel exemplars from the same category
that was previously reinforced; however, the pigeons also gener-
alized their pecking behavior to novel exemplars from a different
category that was never previously reinforced. Specifically, novel
stimuli from both the trained and unseen category supported sim-
ilarly high levels of responding in the first two sessions of training;
afterward, responding to stimuli in the unseen category dropped,

whereas responding to novel stimuli in the reinforced category
stayed at a high level, slightly below responding to the training
stimuli. The authors contended that these results “appear to chal-
lenge the conclusions . . . that perceptual constraints lead pigeons
to detect within-category similarity immediately upon the percep-
tion of pictures in the same category” (J. E. Sutton & Roberts,
2002, p. 342).

Although the model that we have formalized includes perceptual
coherence as an important principle underlying categorization,
generalization among stimuli is not simply the result of perceptual
similarity because the elements that support generalization can
acquire different amounts of associative strength depending on
their associative histories with the relevant categories. This way, a
category-specific element that has been repeatedly paired with the
same outcome, if it is not presented together with any other
elements that are also good competitors to acquire associative
strength, will support high levels of generalization to new mem-
bers of the category. However, if the category-specific element is
presented together with good competitors that can prevent it from
acquiring associative strength, then the amount of categorical
generalization that it can support will be substantially lower.

Our model can explain the results reported by J. E. Sutton and
Roberts (2002) if a seemingly small detail of their experimental
procedure is taken into account: As is customary in categorization
experiments, pigeons were given a pretraining phase in which they
learned to peck a white screen to obtain food. Learning in the
pretraining phase has to proceed effectively for pigeons to sustain
high and stable rates of responding to the white screen; more
importantly, whatever properties of the white screen control be-
havior, they must also be present in any new training stimuli to
foster high generalized pecking to them. In most cases, later
training with discrimination tasks renders these properties unin-
formative as to the occurrence or nonoccurrence reinforcement; so,
their control over responding is gradually decreased, passing to the
more relevant properties in the training stimuli. Sutton and Rob-
erts’s study did not involve a phase of discrimination training;
thus, the influence of properties that are common to all of the
stimuli could have prevailed during testing.

Our model can explain the results of the J. E. Sutton and Roberts
(2002) experiment by representing the properties that acquire
control over behavior during pretraining through a small set of
elements, which acquire associative strength due to repeated pair-
ing with reinforcement. This associative strength is then general-
ized to the training stimuli, which share these elements with the
stimulus presented during pretraining. The fast and high transfer of
responding that is usually observed between pretraining and dis-
crimination training in pigeon experiments like those reviewed
above lends support for this assumption.

The high generalization that is controlled by the white screen
elements effectively limits the amount of associative strength that
is available during the training phase, thereby blocking acquisition
of the association between all of the other elements and the
reinforcer. At the beginning of the subsequent testing phase, there
is high generalization of responding to new exemplars from both
the same category and from a different category because of the
associative strength that is acquired by these pretrained elements.

We performed a simulation involving a pretraining phase, in
which a set of only five elements was presented and reinforced.
This set of elements represented the aspects of the training situa-

Figure 12. Simulated results of Astley and Wasserman’s (1992) experi-
ment comparing generalization of responding to members of a reinforced
category and to exemplars from different categories. Overall discrimination
ratio and categorical error ratio measures (see text for details) are reported
in the top and bottom panels, respectively.
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tion and the white pretraining screen that are shared with all of the
other stimuli in this experiment. Therefore, the same five elements
were included in the representation of all of the other stimuli
throughout the simulation. The results are shown in Figure 13. The
pattern of results is similar to that found by J. E. Sutton and
Roberts (2002). At the beginning of testing, associative strength
generalizes to exemplars of both the reinforced and novel catego-
ries; however, in later sessions, associative strength drops precip-
itously only for the novel category exemplars. Other simulations
have confirmed that the model can still nicely reproduce the results
of Astley and Wasserman (1992) if the pretraining phase is in-
cluded in the simulation as well. The disparity between the 1S�
and 12S� conditions is reduced in comparison to the previously
reported simulations, but the general pattern is the same as that
illustrated in Figure 12.

To summarize the results and analysis so far, our account of the
discrimination and generalization of natural categories importantly
depends on the notion of perceptual resemblance among members
of the same category. Nonetheless, our account is not purely a
result of stimulus generalization based on perceptual similarity.
Instead, this account places special emphasis on the interaction
between perceptual similarity and error-driven learning. Together,
these two processes allow us to explain the results of J. E. Sutton
and Roberts (2002) without abandoning the principle of perceptual
coherence that is basic to the stimulus representation in the model.

A final study examining the issue of within-category similarity
was conducted by Wasserman and colleagues (1988, Experiment
1). This study is particularly important because it sought evidence
of both the ability of pigeons to discriminate the exemplars within
a natural category and their ability to perceive these exemplars as
more similar to each other than to exemplars from other natural
categories.

In this experiment, Wasserman and colleagues (1988) used 20
exemplars from each of four natural categories (cats, flowers, cars,
and chairs) and assigned them to two subcategories composed of

10 exemplars each. In any given session, the pigeons were pre-
sented with photographs from two of the four categories, which
had to be sorted into four subcategories, each associated with an
individual response key. This design allowed the experimenters to
evaluate the ability of pigeons to discriminate among members of
the categories because only by identifying the individual members
of each subcategory could the birds raise their choice accuracy
above 50%.

The study also allowed the experimenters to examine the types
of errors that pigeons make when they are learning the subcatego-
rization problem. If the pigeons did not perceive the members of
one category to be more similar to each other than to members of
the other categories, then the pigeons’ errors should have been
evenly distributed across the choice responses. However, if the
pigeons did perceive the visual coherence of the four natural
categories, then they should have made a disproportionate number
of errors to the response key that was associated with the same
category as the correct choice.

The pigeons were indeed able to learn this subcategorization
task and to discriminate among members of the same natural class
at high levels of accuracy (about 70% on average in the last eight
daily sessions). As well, the percentage of categorical errors that
were committed by the pigeons rose monotonically as a function of
the amount of training, from the chance level of 33% to a final
level near 55%. The latter result can be construed as support for a
perceptual mechanism underlying natural categorization in
pigeons.

The results of a simulation of this experiment are shown in the
top and bottom panels of Figure 14. The model faithfully repro-
duces both pigeons’ ability to discriminate among stimuli within
the same category (top) and the initial increment in their commis-
sion of categorical errors (bottom). Discriminative performance
(top) is possible because of the presence of exemplar-specific
elements to support it. Categorical errors (bottom) are the outcome
of a rapid increase in the association between category-specific
elements and reinforced responses. Although category-specific
elements are not good predictors of the correct response, they are
active any time an exemplar of a particular category is presented.
The fact that category-specific elements occur much more often
than stimulus-specific elements puts the latter elements at a de-
cided disadvantage to compete for the acquisition of behavioral
control. Thus, category-specific elements rapidly get associated
with the two choice keys that are assigned to exemplars of a
particular category, thereby supporting high error rates to those
choice keys whenever members of that category are presented.

One point of divergence between our simulation and the exper-
imental data is that the latter do not show a decline in the percent-
age of categorical errors late in training. In our simulation, the
probability of categorical error rises to a ceiling of .54 and then
slowly decreases to reach .51 at the end of the experiment. It is
possible that an effect of only four percentage points was simply
obscured by random variability in the original experiment. How-
ever, the model predicts that categorical errors should steadily
decline with further training. Therefore, a replication of the orig-
inal experiment by Wasserman and colleagues (1988) with a larger
number of training sessions should lead to a detectable decrement
in the proportion of categorical errors. This prediction remains to
be tested.

Figure 13. Simulated results of J. E. Sutton and Roberts’s (2002) exper-
iment comparing generalization of responding to members of a reinforced
category (the only one that was presented during training) and exemplars
from a different category.
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Precedence of Categorization Learning Over
Identification Learning

The two most influential approaches to explaining human cat-
egorization are prototype theories (Posner & Keele, 1968; Reed,
1972) and exemplar theories (Kruschke, 1992; Medin & Schaffer,
1978; Nosofsky, 1986). These theories differ in the role that each
proposes for the abstraction of category information from experi-
ence with exemplars of the category.

Prototype theories propose that, in categorization tasks, humans
store a unique representation summarizing their experience with
all of the exemplars of the category. This prototype represents an
abstraction of the central tendency in the experienced distribution
of exemplars insofar as their perceptual properties are concerned.
Classification of a new stimulus as a member of a category will
depend on its similarity to the stored category prototype.

Exemplar theories propose that humans store representations of
the individual instances of a category that are experienced; there-

fore, no process of abstraction intervenes between the perceived
exemplars and their representation and storage. Classification of a
new stimulus as a member of a category depends on its similarity
to all of the exemplars that have been stored as members of that
category.

The category-specific elements in the stimulus representation of
our model play the role of a summary representation of the
experiences that organisms have had with several category mem-
bers, in a process akin to prototype abstraction. However, our
model also includes stimulus-specific elements, which convey
more particular information about previous experience with the
exemplar (or exemplars) that activates them. What is more impor-
tant, the part that is played by either kind of information in
stimulus classification is completely constrained by learning from
exposure to the experienced environmental conditions. This aspect
of the model allows it to faithfully reproduce several interesting
aspects of the interplay between categorization and identification.

The subcategorization experiment of Wasserman et al. (1988),
discussed in the prior section, allowed these authors to indirectly
evaluate the relative roles of these processes in the discrimination
behavior of their pigeons. Wasserman et al. reanalyzed their data
according to the following logic: When a pigeon makes a choice,
it might be (a) correctly identifying the stimulus and making the
correct response, (b) correctly categorizing the stimulus and evenly
distributing its pecks to the two responses that are associated with
the correct category, or (c) guessing, leading to evenly distributed
choices of all four responses. Their reanalyzed results revealed
that, as training advanced, guessing progressively fell, identifica-
tion progressively rose, and categorization initially increased but
later decreased. Even more interesting, pigeons were initially in-
clined to process the stimuli at the categorical level, but this
inclination shifted in favor of processing the stimuli at the identi-
fication level in later stages of training.

The results of our simulation of this experiment were analyzed
according to the same logic that was originally applied by Was-
serman et al. (1988) to their pigeon data. The results are shown in
Figure 15. The model was able to reproduce each of the afore-
mentioned aspects of the original data. The results of this simula-
tion are mainly due to the different rates of presentation of the
category-specific and stimulus-specific elements. As explained in
the previous section, at the beginning of training, category-specific
elements strengthen their associations with the two responses with
which the category is paired, producing above-chance accuracy,
but these category-specific elements also engender a large propor-
tion of categorical errors due to within-category generalization.
These category-specific elements acquire most of the associative
strength because they are presented more often than the exemplar-
specific elements on trials involving the category in question. To
reduce such categorical errors, inhibitory associations grow be-
tween the stimulus-specific elements and the incorrect categorical
response. Inhibitory learning is rather slow due to the relatively
low rate of presentation of stimulus-specific elements, but such
inhibitory learning eventually leads to better discrimination per-
formance at the end of training by canceling generalized excitation
from one subcategory to the other.

The previous simulation nicely illustrates the way in which
some patterns of behavior in animal categorization tasks can arise
as a consequence of the interaction between stimulus generaliza-
tion and error-driven learning. An interactive learning model can

Figure 14. Simulated results of Wasserman, Kiedinger, and Bhatt’s
(1988) experiment assessing pigeons’ performance in a subcategorization
task. The top panel shows the probability of correct choice as a function of
training. The bottom panel shows the proportion of categorical errors
across training.
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account for the dynamics of learning in this kind of situation better
than a purely similarity-based model. A more recent experiment by
Cook and Smith (2006) also addressed the interplay between
identification and categorization, but in a more direct way.

Cook and Smith (2006) constructed two artificial categories
comprising stimuli that varied in six binary dimensions. Each
category contained one prototype, five typical exemplars that
shared five features in common with the prototype, and one ex-
ception that shared five features in common with the prototype of
the other category. Because of the category structure arranged by
Cook and Smith, their subjects were required to rely at least in part
on the particular configuration of features of the exception items to
reach perfect discrimination performance.

The results of this rule-exception task were analogous to those
observed for the subcategorization task: Both pigeons and humans
learned to classify the prototypes and the typical exemplars faster
than the exceptions. More important for the present discussion,
when prototype and exemplar models of categorization were fitted
to the data, the former performed better during the early stages of
training, whereas the latter performed better during the final stages
of training. Thus, neither of the two accounts alone could explain
the entire pattern of data across training. This observation led Cook
and Smith (2006) to conclude that their results “show the value of
a mixed theoretical perspective that permits behavior to be deter-
mined by different categorization systems operating at different
times” (p. 1065). The problem with such a mixed model approach
is that it does not give a principled explanation of how experience
with the categorization task would lead pigeons to shift from one
strategy to the other.

Our explanation in terms of stimulus elements and error-driven
learning does specify why learning occurs the way it does, and it
is far more parsimonious than proposing a shift between altogether
different categorization systems. In fact, we have found that a

simulation of the Cook and Smith (2006) experiment using the
unique cue model—first proposed by Wagner and Rescorla (1972)
as an extension of the Rescorla–Wagner model and more recently
deployed by Gluck (1991) to explain human categorization—can
reproduce all of the important aspects of its results. The unique cue
model proposes that each stimulus feature is processed indepen-
dently and forges its own association with the outcome but that
every particular configuration of features also activates a config-
ural unit that represents that unique combination.

The results of our simulation are shown in Figure 16. The
parameter values for learning rate and the choice process in this
simulation were the same as in our own model. Although the
unique cue model learns the task faster than the pigeons with the
parameter values used in this simulation, it can reproduce the faster
learning of the prototypes and the typical exemplars, as well as the
slower learning of exception stimuli, shown in the experimental
data. Just as our model of natural image categorization can explain
the results of Wasserman et al. (1988), the unique cue model, also
based on the error-driven learning rule of Rescorla and Wagner,
can account for the results reported by Cook and Smith (2006) in
artificial categorization by pigeons.

Retroactive Interference Between Categorization
and Identification

Another interesting interplay between categorization and iden-
tification is the possible retrospective interference that one strategy
might exert over the other. The idea here is that discriminative
behavior in categorization tasks can be controlled either by
stimulus-specific properties or by category-specific properties that
are shared by most of the exemplars in the category. Control by
one of these two kinds of properties may depend on the demands
of the task and, what may be even more important, on prior control
by the other (Medin, Dewey, & Murphy, 1983).

Loidolt, Aust, Meran, and Huber (2003, Experiment 1) tested
this idea in a study that took advantage of the different demands
posed by categorization and subcategorization tasks. In a subcat-
egorization task, exemplars of the same category must be sorted
into two or more different groups, so that categorical information

Figure 16. Simulated results of Cook and Smith’s (2006) experiment
using the configural cue model of associative learning.

Figure 15. Results of a simulation of Wasserman, Kiedinger, and Bhatt’s
(1988) experiment after a reanalysis of the data aimed at elucidating the
relative contributions of categorization performance, identification perfor-
mance, and guessing to the pigeon’s choices in a subcategorization task.
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should interfere with the required discrimination; here, subjects
must rely on exemplar-specific information to increase their dis-
crimination accuracy. In a categorization task, on the other hand,
accurate performance can be achieved by using either of these
sources of information; nevertheless, learning should proceed
faster if it is based on categorical information because what is
learned about one stimulus can be easily transferred to several
other exemplars of the category.

Loidolt and colleagues (2003) investigated retrospective inter-
ference of category learning over identification learning with a
three-phase experimental design. In Phase 1, pigeons received
training on a go/no-go subcategorization task involving 20 human
faces of the same sex: 10 reinforced and 10 nonreinforced. Sepa-
rate groups received training with male and female faces. Phase 2
involved training on a categorization task with 100 stimuli: half of
them male human faces and the other half female human faces. In
Phase 3 testing, the pigeons were presented with completely novel
stimuli from the categories that were used in Phase 2 as well as
with the same 20 stimuli that were used during the subcategoriza-
tion task in Phase 1.

The most important result was that pigeons in Phase 3 clas-
sified all of the items included in the subcategorization task—
both reinforced and nonreinforced—in accord with the category
rule that was learned in Phase 2 categorization and regardless of
the subcategorization experience that each bird had gained with
each exemplar in Phase 1. For example, those pigeons that
received subcategorization training with male faces (both rein-
forced and nonreinforced) in Phase 1, followed in Phase 2 by
categorization training with male faces reinforced, showed high
rates of responding in Phase 3 to all of the stimuli from the
subcategorization phase, including those that were nonrein-
forced and that had produced low rates of response in Phase 1.
Furthermore, this retrospective interference effect was virtually
complete; the response rate was almost identical to all of the
subcategorization stimuli and comparable to that shown to
novel stimuli from the same category.

The predictions of the model for this experiment, plotted as
mean response probability of the relevant training and testing
stimuli, are presented in Figure 17. The top panel presents the
results of a simulation in which the category that was used
during subcategorization training was reinforced during cate-
gorization training; the bottom panel represents the condition in
which this category was nonreinforced during categorization
training. The model accurately reproduces the observed pattern
of data, particularly the radical change in response rate to those
stimuli from the subcategorization task that were exposed to the
conflicting contingencies of reinforcement. In both the original
data and the simulations presented here, these stimuli show a
change in their associative value toward the value that was
acquired by the category during the immediately prior training.

During categorization training in this simulation, 50 exem-
plars from the relevant category were consistently reinforced or
nonreinforced. Each of these exemplars was represented by
some of the same elements that were used to represent the
stimuli that were involved in the previous subcategorization
task, with the consequence that their change in associative
strength was transferred to those stimuli as well. Because of the
large number of exemplars involved in categorization training,
most of the elements representing the stimuli in the subcatego-

rization task (both category-specific and stimulus-specific ele-
ments) were presented, resulting in a very strong retrospective
interference effect.

New Predictions: Manipulating the
Representational Elements

The simulation work presented in the previous sections docu-
ments how a substantial number of experimental outcomes can be
explained by simply assuming that animals represent natural im-
ages as collections of common and unique elements. The repre-
sentation that is chosen for the stimuli might be deemed to be

Figure 17. Simulated results of Loidolt, Aust, Meran, and Huber’s (2003)
experiment, which reported retroactive interference of identification learn-
ing by categorization learning.
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nothing more than an arbitrary or expedient selection to make
quantitative modeling easier, but we believe that thinking about
natural image classification in terms of category-specific and
stimulus-specific elements also provides fresh insights and sug-
gests new ways of studying this interesting form of animal learn-
ing. Although these elements are completely hypothetical, unob-
servable entities, the role that they might play in learning different
discriminations gives hints about how to manipulate their associ-
ation with an outcome. In the words of Rescorla (1976, p. 96), “our
inability to separately present the shared and unique elements of a
set of stimuli does not prevent them from being manipulated to
make differential predictions.”

For example, we know that, to master a pseudocategorization
task, animals must rely on the information that is provided by
stimulus-specific elements, whereas category-specific elements are
completely uninformative as to the correct responses. We also
know that increasing category size enhances the control over
behavior that is acquired by category-specific elements. Thus,
these and other experimental manipulations can be used to par-
tially isolate the control over behavior by a particular kind of
element as well as to test our predictions about their role in
category learning.

We next present two new predictions of our model, and we
report experimental evidence supporting both of them. We
hope, in the process, to demonstrate the heuristic value of our
theory as well as to test the novel notion that error-driven
learning plays an important part in natural image categorization.
We focus on the predictions of the model concerning competi-
tion between stimulus-specific and category-specific elements
for the control of behavior in situations that produce blocking
(Kamin, 1969) and relative validity (Wagner, Logan, Haber-
landt, & Price, 1968) effects in Pavlovian conditioning: two key
effects in the development of modern associative learning
theory.

Experiment 1: Blocking of Categorical Control by
Prior Individual Exemplar Learning

As we have already shown, our model predicts that, for a
pseudocategorization task to be learned, pigeons must rely on
stimulus-specific elements. Because of the error-driven nature
of the Rescorla–Wagner learning rule, further training with
some of the stimulus–response pairs from the original discrim-
ination, which together create a true categorization task, should
not foster any category learning. Because the pigeons have
already learned the first discrimination through rote memoriza-

tion, they should not be able to learn the systematic mapping
between categories and responses in the second discrimination
or to generalize this learning when novel exemplars of the
categories are presented. Thus, the model predicts a blocking
effect (Kamin, 1969), in which learning a discrimination by
allocating associative strength to stimulus-specific elements
interferes with further allocating associative strength to
category-specific elements, under conditions that normally
would produce such categorical learning.

The design of our experiment that tested this prediction is
depicted in Table 1. The experiment is divided into two training
phases and a testing phase. In Phase 1, for the blocking condition,
pigeons learned a pseudocategorization task in which 10 stimuli
from each of two categories were paired with one choice key and
10 different stimuli from each of the same two categories were
paired with a second choice key. In Phase 2, half of the trials in
the pseudocategorization task were dropped, transforming it into a
true categorization task, in which all 10 stimuli from one category
were assigned to one choice key and all 10 stimuli from the other
category were assigned to a second choice key. Simultaneously,
the subjects began training on an additional categorization task
involving two completely novel categories, which served as a
control condition. This control condition provided a benchmark for
the proper amount of training needed to achieve robust category
learning for each pigeon, and it also provided a control for the
amount of generalization to novel stimuli fostered by this training.
Note that, because this was a within-subjects design, each pigeon
received the same amount of training in both of the categorization
tasks during Phase 2, so, any disparity in the amount of general-
ization to novel exemplars would have to be due to the prior
pseudocategorization training in the blocking condition. Such
stimulus generalization was assessed in a final testing phase, in
which novel stimuli from each of the trained categories were
presented to the pigeons.

The left panel of Figure 18 shows the predictions of the model
for this experimental design. As we suspected, the model predicts
lower generalization of categorization performance in the blocking
condition than in the control condition. In the blocking condition,
the pigeons should not learn about the consistent assignment of
responses to categories in Phase 2 because they should already
have learned the assignment of each individual stimulus in the task
to its correct response in Phase 1. In other words, the category-
specific elements should not acquire associative strength in Phase
2 because they are redundant; all of the information about the

Table 1
Design of Experiment 1

Condition Phase 1: pseudocategorization Phase 2: categorization Generalization test

Blocking 10 images from Category 1/Response 1 10 images from Category 1/Response 1 Phase 2 training trials �
10 images from Category 2/Response 2 10 images from Category 2/Response 2 10 new images from Category 1
10 images from Category 1/Response 2 10 new images from Category 2
10 images from Category 2/Response 1

Control 10 images from Category 3/Response 3 Phase 2 training trials �
10 images from Category 4/Response 4 10 new images from Category 3

10 new images from Category 4

371COMMON-ELEMENTS MODEL OF CATEGORIZATION



correct response is already given by the stimulus-specific elements
that were trained in Phase 1.

Method.
Subjects and apparatus. The subjects were eight feral pigeons

(Columba livia) kept at 85% of their free-feeding weights. The
apparatus entailed eight operant conditioning chambers (Gibson,
Wasserman, Frei, & Miller, 2004) that were located in a dark room
with continuous white noise.

Procedure. The stimuli were 30 color photographs showing
exemplars from each of four categories (cars, chairs, flowers, and
people) in varied backgrounds. Each pigeon was concurrently
trained on both conditions shown in Table 1, with each condition
trained using a different pair of response keys in a two-alternative
forced-choice task. The assignment of specific categories and
response keys to the conditions shown in Table 1 was counterbal-
anced.

The stimuli were shown on a 107.0-cm � 70.5-cm rectangular
screen positioned in the middle of a computer monitor; the four
response keys were illuminated by square black-and white icons,
positioned near the four corners of the display screen. A trial began
with the pigeon being shown a black cross in the center of a white
screen. Following one peck anywhere on the display, a training
photograph appeared, and the bird had to complete an observing
response requirement to the stimulus (from 5 to 45 pecks for
different birds as was necessary to promote learning); then, a pair
of response keys was shown (either top-left and bottom-right or
top-right and bottom-left), and the pigeon had to peck one to
advance the trial. If the pigeon’s choice was correct, then food was
delivered, and an intertrial interval ensued. If the pigeon’s choice
was incorrect, then the house light and the monitor screen dark-
ened, and a correction trial was given after a time-out of from 5 to
30 s. Correction trials continued to be given until the correct
response was made. All of the report responses were recorded, but
only the first report response of each trial was scored in data
analysis. Reinforcement consisted of one to three food pellets.

In Phase 1, a session consisted of four blocks of 40 trials,
arranging the pseudocategorization discrimination that is detailed
in Table 1. Training continued until the pigeon met a criterion of
85% accuracy on each of the four response keys; then, Phase 2

started. Phase 2 sessions consisted of four blocks of 40 trials, as
shown in Table 1. When the pigeons met the criterion of 85%
accuracy for each response key, stimulus generalization testing
began.

Test sessions involved one block of 16 warm-up training trials
that were randomly selected from the Phase 2 contingencies plus
one testing block. The testing block included 10 novel stimuli from
each category and three repetitions of every Phase 2 trial, totaling
176 trials. All of the trials involving novel test stimuli were
nondifferentially reinforced. A test session was followed immedi-
ately by at least one session of Phase 2 training; pigeons were
subsequently tested only if they met criterion. Data for three test
sessions were collected and analyzed for each pigeon. Across the
entire experiment, trials within each session were randomized in
blocks.

Results and discussion. The right panel of Figure 18 shows
the mean proportion of correct choices during generalization test
trials for each of the two conditions. As expected, generalization
performance was lower in the blocking condition (M � .57, SD �
.07) than in the control condition (M � .69, SD � .12). This
disparity was statistically significant by a one-tailed paired-
samples t test, t(7) � 1.91, p 
 .05. (A one-tailed test was
appropriate given the directionality of our experimental hypothe-
sis; we predicted the outcome of this experiment to be lower
generalization in the blocking condition.) Furthermore, the out-
come of this experiment cannot be explained by better perfor-
mance of the categorization itself in the control condition because
both discrimination tasks were trained to the same high criterion of
85% accuracy and performance during the test phase was actually
slightly higher for the blocking condition (M � .94, SD � .03)
than for the control condition (M � .92, SD � .03).

These results closely accord with the predictions that are shown
in the left panel of Figure 18; to the best of our knowledge, this is
the first reported evidence documenting competition for behavioral
control between stimulus-specific and category-specific elements
in natural image categorization. Perhaps even more interestingly,
we obtained this blocking effect without any direct manipulation
of these stimulus elements, only through the use of tasks that,

Figure 18. Model predictions (left panel) and experimental results (right panel) of an experiment into blocking
of categorization learning by previous identification learning of individual examplars.
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according to our model, should affect learning with completely
hypothetical stimulus elements.

In our second experiment, we wanted to confirm the role that is
played by error-driven learning in natural image classification by
exploring an analogue of the relative validity experiment con-
ducted by Wagner et al. (1968). If the predictions of the model
were again confirmed, then we could make an even stronger case
for its utility in explaining natural image categorization and object
recognition in animals.

Experiment 2: Predictive Validity of Exemplar-Specific
Properties Affects Categorical Control

The relative validity design (Wagner et al., 1968; Wasserman,
1974) involves two conditions. In the uncorrelated condition,
subjects are presented with two compound stimuli, AX and BX,
each paired with reinforcement 50% of the time. In the correlated
condition, the same two compound stimuli are presented but now
AX is reinforced 100% of the time, whereas BX is never rein-
forced. Even though, in both conditions, X is reinforced 50% of the
time—and hence its absolute predictive value is always the
same—animals in the uncorrelated condition show more respond-
ing to this stimulus than do animals in the correlated condition.
Thus, instead of depending on its own informative value alone,
conditioning to X depends on the informative value of the other
stimuli that are presented in compound with it. When A and B are
good predictors of the outcome, X does not acquire much asso-
ciative strength despite its being paired with reinforcement 50% of
the time.

The main goal of the present experiment was to investigate an
analogue of the relative validity design in natural image categori-
zation, in which the roles of Stimuli A, B, and X were replaced by
hypothetical stimulus-specific and category-specific elements. The
design of the experiment is shown in Table 2. The uncorrelated
condition involved training with 20 exemplars from one category;
pecks to any of them yielded reinforcement 50% of the time. The
correlated condition involved training with 20 exemplars from a
second category; pecks to half of them were continuously rein-
forced, whereas pecks to the other half were never reinforced. In
both cases, the category itself was reinforced and nonreinforced
the same number of times. In the correlated condition, reinforce-
ment was assigned to particular stimuli, which should encourage
stimulus-specific elements gaining control over behavior. How-
ever, in the uncorrelated condition, stimulus-specific learning
should not be encouraged because none of these elements in the
representation is informative as to whether or not reinforcement
will occur. The result should be that category-specific elements
acquire robust associative strength in the uncorrelated condition,

fostering generalization to new exemplars of the category,
whereas, in the correlated condition, categorical generalization
should be weakened because of the greater control gained by the
more predictive stimulus-specific elements. The test phase, in
which 10 new exemplars from each category were presented, was
included to evaluate this prediction.

The predictions of the model are depicted in the left panel of
Figure 19, which shows the percentage of generalized responding
to the novel stimuli during the test, computed by taking the ratio of
the response probability of the test stimuli over the response
probability of the reinforced stimuli (consistently reinforced in the
correlated condition and partially reinforced in the uncorrelated
condition). The model does indeed predict a disparity between the
conditions, with higher category generalization in the uncorrelated
than in the correlated condition.

This experiment also allowed us to explore a second prediction
of our model, one related to the phenomenon of discriminative
conditioning in Pavlovian learning (Pavlov, 1927). In discrimina-
tive conditioning, two similar stimuli are presented separately and
one of them is reinforced (CS�), whereas the second is not (CS�).
In initial training, a conditioned response arises to both the rein-
forced and nonreinforced stimuli, but with further training, the
response to the CS� gradually falls. Rescorla and Wagner (1972;
Wagner & Rescorla, 1972) explained this pattern of results by
assuming that CS� and CS� are composed of common and
unique elements. On CS� trials, common elements acquire asso-
ciative strength, which then generalizes to the CS�. This gener-
alized associative strength produces a conditioned response to the
CS� at the beginning of training, but later, the unique elements of
the CS� become inhibitory, leading to a reduction in responding
to this stimulus.

In the present experiment, the task that was presented to the
pigeons in the correlated condition is analogous to Pavlovian
discriminative conditioning. In this pseudocategorization task, re-
sponses to one group of category exemplars are reinforced, and
responses to a second group of exemplars from the same category
are nonreinforced. In the context of a go/no-go procedure like the
one used here, the Rescorla–Wagner model again predicts strong
acquisition of associative strength by the elements that are com-
mon to both groups of stimuli—the category-specific elements.
This acquisition translates into an initial increment in response rate
to all of the stimuli in the discrimination followed by a gradual
decrement in responding to the nonreinforced stimuli due to in-
hibitory learning involving the pictures’ stimulus-specific ele-
ments. The predictions of the model for the learning curves of the
reinforced and nonreinforced stimuli in the correlated condition
are shown in the top panel of Figure 20. It can be seen that the

Table 2
Design of Experiment 2

Condition Training Generalization test

Uncorrelated 20 images from Category 1/50% reinforcement Training trials �
10 novel images from Category 1/no reinforcement

Correlated 10 images from Category 2/100% reinforcement Training trials �
10 images from Category 2/0% reinforcement 10 novel images from Category 2/no reinforcement
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curve for the reinforced stimuli increases monotonically with
training sessions, whereas the curve for the nonreinforced stimuli
follows a nonmonotonic function with increments in associative
strength early in training and decrements later.

To summarize, the key predictions of our model for the present
experiment were (a) greater generalization to novel category ex-
emplars in the uncorrelated condition than in the correlated con-
dition (see the left panel of Figure 19) and (b) a nonmonotonic
learning curve for the nonreinforced stimuli in the correlated
condition (see the top panel of Figure 20).

Method.
Subjects and apparatus. The subjects were four pigeons kept

at 85% of their free-feeding weights. The apparatus involved the
same four operant chambers as Experiment 1.

Procedure. The stimuli were some of those that were de-
scribed in Experiment 1 (categories: people and flowers). Each
pigeon was concurrently trained on the two conditions shown in
Table 2, using a go/no-go procedure. The assignment of categories
to each condition was counterbalanced.

All of the trials began with the presentation of a white rectangle
in the center display area of the screen. A single peck anywhere
within the rectangle led to the presentation of the stimulus. On a
reinforced trial, the stimulus was presented and remained on for
15 s; the first response after this interval turned the display area
black and led to the delivery of food. On a nonreinforced trial, the
stimulus was presented and remained on for 15 s, after which the
display area automatically darkened and the intertrial interval
began. On both reinforced and nonreinforced trials, scored re-
sponses were recorded only during the first 15 s of stimulus
presentation. The intertrial interval randomly ranged from 6 to
10 s. Reinforcement consisted of one to three food pellets.

In training, each session consisted of four blocks with the 40
trials described in Table 2. In the correlated condition, 10 stimuli
from one category were reinforced, and 10 other stimuli from the
same category were nonreinforced, whereas, in the uncorrelated
condition, all of the stimuli in the category were equally often
reinforced and nonreinforced. To evaluate performance, a discrim-
ination ratio was computed for the stimuli in the correlated con-

dition by taking the mean response rate to the reinforced stimuli
and dividing it by the sum of the mean response rate to the
reinforced stimuli plus the mean response rate to the nonreinforced
stimuli. Training continued until the bird achieved a discrimination
ratio higher than .85 for two consecutive sessions; then, testing
followed.

In each testing session, one training block was followed by two
testing blocks. Each testing block included one nonreinforced
presentation of each of 10 novel stimuli from the two categories,
randomly interspersed in a block of training trials. The total
number of trials in each test session was 160. Testing continued
until the discrimination ratio for the training stimuli in the corre-
lated condition and the discrimination ratio for the test stimuli in
both conditions were above .85 for two consecutive sessions. This
criterion guaranteed that testing data were collected up to the point
where responding to the test stimuli was almost completely extin-
guished. Across the entire experiment, trials within each session
were randomized in blocks.

Results and discussion. We computed a generalization ratio
for the novel stimuli during testing by taking the mean rate of
response to these stimuli and dividing it by the mean rate of
response to the reinforced stimuli in each condition. We computed
this measure because the level of responding to the reinforced
training stimuli differed in both conditions, as expected from the
different frequencies of reinforcement in each case (continuous
reinforcement in the correlated condition, partial reinforcement in
the uncorrelated condition). We wanted to compare between the
conditions the proportion of responding to the reinforced stimuli
that generalized to the new exemplars of the category, which is
exactly what this measure of generalization represents.

The mean generalization ratio for each of the two conditions is
shown in the right panel of Figure 19. As predicted by the model
(see the left panel of Figure 19), stimulus generalization was
higher in the uncorrelated condition (M � .41, SD � .02) than in
the correlated condition (M � .26, SD � .08); the disparity was
statistically significant according to a paired-samples t test, t(3) �
4.92, p 
 .01. These data thus show that the learning of open-
ended visual categories does not depend simply on the informative

Figure 19. Model predictions (left panel) and experimental results (right panel) of an experiment investigating
the effect of the predictive validity of stimulus-specific elements on categorization learning.
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value of the category to predict reinforcement but also on the
predictive value of each individual stimulus in the categorization
task. Information carried by stimuli at these two levels—
represented by stimulus-specific and category-specific elements—
competes for control of behavior in natural image categorization.
This result is analogous to the relative validity effect observed in
Pavlovian conditioning preparations but at the level of whole
categories instead of individual stimuli.

The bottom panel of Figure 20 shows mean response rates
across blocks of training for both reinforced (solid circles) and
nonreinforced (open circles) stimuli in the correlated condition.
Because the speed of mastering the discrimination varied among
pigeons, the data are presented up to the block in which the fastest
pigeon met criterion (Block 28). The mean response rate in the last
training block across all of the pigeons is also included as a point
of reference. As predicted by the model, response rate to the
nonreinforced stimuli rises at the beginning of training along with
response rate to the reinforced stimuli; after about seven training
blocks, response rate to the nonreinforced stimuli starts falling.

This initial rise and later fall in mean response rate were exhibited
by all four pigeons.

The data shown in Figure 20 were entered in a 2 (reinforce-
ment) � 28 (training block) analysis of variance, which revealed
a significant Reinforcement � Training Block interaction, F(27,
81) � 5.26, p 
 .001, but no main effect of either reinforcement,
F(1, 3) � 5.31, p 	 .10, or training block, F(27, 81) � 1.17, p 	
.10. These results suggest that the changes in mean response rate
across training differed significantly for the reinforced and nonre-
inforced stimuli.

The present results, together with those of Experiment 1, clearly
illustrate three important contributions of our model. First, they
show how our model can generate new predictions about the
conditions that foster categorization learning, which can be em-
pirically tested. Second, they serve as concrete examples of how
the theoretical elements that we have proposed as the basis for
categorization can be effectively manipulated in categorization
experiments. Third, they serve as evidence that the same stimulus
competition principles that account for simple associative learning
are also involved in pigeons’ categorization of natural images,
yielding strong empirical support for the incorporation of an error-
driven learning rule into our model.

General Discussion

The present article represents a focused effort to apply the
principles of associative learning theory to explain perceptual
categorization phenomena in animals. The resulting model has
proven to effectively explain a wide array of empirical data on
natural categorization behavior in pigeons, despite the simplicity
of its assumptions about stimulus representation and associative
learning and despite the fact that all of the simulations used the
same set of parameter values. Furthermore, the model has been
able to generate testable predictions about the conditions that
foster categorization learning with naturalistic stimuli, and these
predictions have been clearly confirmed in two new experiments.
Because these experiments involved the manipulation of com-
pletely hypothetical elements and their association with behavior,
it would have been difficult even to envision them without a
theoretical framework like the one that we propose here.

The success of our model suggests that the formalization and
application of associative theories in the tradition of animal learn-
ing research are possible even to explain the results of experiments
using complex and uncontrolled stimuli, like the photographs that
have often been used to study natural categorization behavior. The
model permits us to build a bridge between very different tradi-
tions in animal learning research. As such, we hope that it repre-
sents a step forward in the development of a general theory of
animal learning, one that explains both simple associative learning
and more complex learning situations according to the same basic
principles.

Despite the evident popularity of this general principles idea
among many animal learning researchers (Huber, 2001; Mackin-
tosh, 1995, 2000) and the fact that this idea has been used to
explain studies of artificial stimulus categorization (Gluck &
Bower, 1988; Mackintosh, 1995; Shanks, 1991), to the best of our
knowledge, ours is the first attempt to formalize a model of natural
categorization in the tradition of error-driven learning theories and
to assiduously assess the predictions of the model against empir-

Figure 20. Learning curves for reinforced and nonreinforced stimuli in
the correlated condition of Experiment 2. The top panel shows the func-
tions that were predicted by the model, and the bottom panel shows the
experimental results.
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ical data that have been collected in a long line of programmatic
experiments. The notion that associative learning principles may
underlie natural image categorization in animals had remained
untested until now; we have presented here the first computational
and empirical evidence favoring this possibility.

Do note that the distinction between category learning investi-
gations involving natural images and those involving artificial
images is far from trivial, given that they differ both in the physical
attributes of the stimuli (Simoncelli & Olshausen, 2001) and in the
difficulty that different categorization problems pose for nonhu-
man animals (Lea et al., 2006). Our conceptualization of complex
stimuli in natural categorization studies in terms of shared and
unique representational elements suggests that, despite the dispar-
ities between artificial and natural categorization tasks, both can be
explained using the same general principles of elemental stimulus
representation and error-driven learning.

In the remainder of this article, we discuss the relation between
our model and alternative schemes for categorization learning.
First, we consider the possibility of developing models using
alternative learning algorithms from those available in the animal
learning literature. Second, we comment on the relation between
our model and some of the most popular models in the human
categorization literature. Finally, we propose how our model might
be extended to accommodate some remaining challenges in the
explanation of animal visual categorization.

Alternatives to the Rescorla–Wagner Model

Attempting to explain perceptual categorization by elaboration
of the Rescorla–Wagner model entails all of the strengths and
weaknesses of this particular theory. Despite its many celebrated
successes, there is a long list of empirical data that the Rescorla–
Wagner model cannot explain (Miller, Barnet, & Grahame, 1995);
it can be expected that our model will similarly fail to explain
analogous results in categorization studies (Aitken, Bennett,
McLaren, & Mackintosh, 1996; Aydin & Pearce, 1994). It is also
clear to us that our model is still in its infancy; with time, it will
be necessary to modify it or to replace it to give an even more
complete account of natural categorization in animals. Other as-
pects of categorization, based on nonassociative processes like
perceptual learning and attention (Goldstone, 1998; Kruschke,
2003), might force such changes.

It should be noted here that evidence suggesting the participa-
tion of such processes does exist in the avian categorization
literature, coming from experiments that used artificial stimuli
(Aitken et al., 1996). Thus, we do not deny that there is a good
chance that these processes, which are not captured by our model,
might play an important role in the categorization of objects in
natural scenes. However, until now, there has not been a system-
atic research agenda directed to determining the impact of percep-
tual and attentional learning in the study of animals’ categorization
of natural images. One reason for the absence of this agenda might
be that clear evidence of such processes is difficult to gather
without the use of stimuli that can be easily manipulated; we hope
that the framework presented here will provide hints about how to
tackle such difficult empirical questions. If, as we suspect, percep-
tual learning and attentional learning do have an important impact
on avian natural image categorization, then our model should be
modified or replaced by a theory incorporating these mechanisms.

Another interesting possibility is to implement our model using
a common-elements representation together with Pearce’s highly
successful theory of associative learning (Pearce, 1987, 1994,
2002). This theory involves an error-driven learning rule like the
one that we used here, but instead of proposing that the associative
strength of a stimulus configuration is the simple sum of the
associative strengths of each of its elements (as in Equation 4 and
the summation term in Equation 1), Pearce’s theory proposes a
more complex combination principle based on a configural repre-
sentation of stimuli. Simulations with this configural version of our
model (based on Pearce, 1994) have shown that, to reproduce the
results of most of the experiments discussed here, all that is needed
is to adjust the learning rate parameters. Thus, the data that we
have considered here do not allow us to distinguish these two
associative learning models. We believe that many other models
that treat associative learning as an error-correction process may
also effectively reproduce the results that we have reviewed above.

However, we do not believe that comparing these two models,
or any other models of associative learning, ought to be the
primary research objective in the study of natural image categori-
zation. These models were developed to explain simple associative
learning; experiments using Pavlovian preparations and easily
manipulable stimulus compounds are more likely to be informative
about their relative utility. We believe that a much more interesting
line of research should focus on those aspects of natural image
categorization that are not shared with associative learning pro-
cesses, as we discuss below.

Also, not all theories of Pavlovian conditioning are straightfor-
wardly applicable to the stimulus representation in our model.
Some classic theories of compound generalization (e.g., Pearce,
1987; Rescorla & Wagner, 1972) explain how much associative
strength is generalized from one stimulus compound to another as
a function of the components that are shared between them. That
is, each discrete stimulus that is given to an animal in a Pavlovian
preparation is represented through a single, discrete unit in these
models. Because of this feature, the generalization and learning
rules in those theories can be straightforwardly applied within the
framework of our model—if it is assumed that the elements in our
representations take the place of stimulus components, which is
exactly what has been done here with the Rescorla–Wagner model.

More recent elemental theories of associative learning use com-
ponential representations, meaning that they represent each indi-
vidual stimulus through a number of representational elements.
Our model is itself a componential model, in which a single image
is represented by a number of elements varying in their level of
category specificity. Contemporary componential models of Pav-
lovian conditioning include Wagner’s (2003) replaced elements
model, Harris’s (2006) attentional buffer model, and McLaren and
Mackintosh’s (2000) elemental model. Whereas classic models
take discrete stimuli to be their elements, componential models add
a new representational layer by treating each stimulus as composed
of subelements. Furthermore, these elements interact in a nonlinear
fashion, with each of them increasing or decreasing the activation
of the others depending on factors such as the similarity relations
between the stimuli that they represent. This feature allows these
models to represent the same stimulus in different ways depending
on the context in which it is presented or to solve discriminations
that are not linearly separable without proposing a configural
stimulus coding. However, the generalization rules that are in-
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cluded in these models are built on the subelements in their
representation; they do not offer any straightforward way to com-
pute generalization across compounds as a function of their com-
ponents, as in classic models.

If a researcher wanted to apply these componential models to
our stimulus representation, then one of two strategies could be
taken, each leading to an underspecified model. First, it is possible
to imagine that the elements in our representations are analogous
to the elements in componential models of conditioning. In this
case, to specify stimulus generalization principles, it would be
necessary to group the elements into components representing
discrete stimuli and then to determine how these grouped repre-
sentations should interact with each other (e.g., by determining
how similar one group of elements is to another). It is obvious that
this solution leaves us facing the same problem that we have tried
to solve in this article: We do not know how to parse natural
photographs into components, and we know even less about the
similarity relations between such components in each photograph.

A second possibility would be to imagine that our elements are
analogous to the discrete stimuli in these models, as in classic
models of associative learning. In this case, each of the elements in
our representation would itself be represented through a pool of
subelements, and again the interactions among the elements them-
selves must be determined. In sum, we cannot apply componential
models to our stimulus representation, which is itself componen-
tial, without making assumptions about how natural images are
parsed into components and how these components interact with
each other. Even if this task were possible, we believe that pursu-
ing it would be ill advised; the final result would be a considerably
more complex model than what we currently have, and it would
entail a step that is not called for by the available data in the area
of research that is our focus in this article.

Our conclusion is that it is unclear whether componential mod-
els of associative learning can explain natural image categorization
phenomena at all. Although those models are similar to the present
theory in that they use elements to represent different stimuli, that
similarity is only superficial because none of these models in-
cludes a way to represent the variability in category specificity
across elements that is essential to explaining stimulus categori-
zation. As we noted earlier, in this respect, our model is more
closely related to the original ideas of SST than to contemporary
elemental theories of associative learning.

Relation to Models of Human Categorization

One of the main goals of our work is to build a bridge between
traditional animal learning theory and natural image categorization
research. With this aim, we have focused on learning rules taken
from the animal learning literature, although we are well aware
that the literature in human categorization contains an even larger
number of models that we have not taken into account. Without
actually testing modifications of these models against the data, it is
impossible for us to assess their value in describing the principles
of animal visual categorization. Nevertheless, we suspect that at
least some of those models of human categorization are not well
suited to explaining the learning dynamics seen in many animal
studies.

Our model can explain these results because it uses an interac-
tive learning rule (Nosofsky, Kruschke, & McKinley, 1992), in

which generalization and learning interact with each other during
training, explaining the dynamics of category learning as a func-
tion of the competition among elements to become associated with
a response. Some of the most popular models of human categori-
zation (Ashby, 1992; Estes, 1986; Medin & Schaffer, 1978; Nosof-
sky, 1984; Reed, 1972) simplify the category learning process by
just counting co-occurrences of exemplars (or their features) and
responses. Classification is then treated as a decision process based
on similarity and frequency information. We believe that this kind
of model would have considerable difficulty explaining, for ex-
ample, the precedence of categorization learning over identifica-
tion learning that was found by Wasserman et al. (1988), just as it
has difficulty explaining analogous training effects in artificial
categorization with humans (Smith & Minda, 1998) and animals
(Cook & Smith, 2006). The learning data that were presented in
Experiment 2 (see Figure 20) would also be difficult to explain
using traditional categorization models or any other model that
does not include an interactive learning rule.

Connectionist models of human categorization, which do in-
clude interactive, error-correction learning rules, are more likely to
provide a good account of the results discussed here. Some of these
models (Gluck & Bower, 1988) have been found to be equivalent
to the Rescorla–Wagner model under special circumstances. Oth-
ers, like ALCOVE (Kruschke, 1992), are more similar to Pearce’s
model, in that they involve a configural stimulus representation
combined with an error-driven learning rule.

Although we grant that models like ALCOVE capture some of
the learning principles that are involved in our model, we also
consider that this and other theories of human category learning
are unnecessarily complex and flexible in comparison with models
of animal learning that can account for the data reviewed here.
Also, ALCOVE and other models of human categorization learn-
ing do not use a common-elements approach to explain generali-
zation among category exemplars; instead, they use a distinctive-
elements rule in which generalization is an inverse function of the
mismatch between stimuli (Sattath & Tversky, 1987). Because
both rules compute similarity in fundamentally different ways
(Young & Wasserman, 2002), we are uncertain whether a model
involving a distinctive-elements generalization rule can explain the
results that are accounted for by our common-elements model.

Remaining Questions and Extensions of the Model

As we noted earlier, there are important aspects of natural image
classification that our model leaves unexplained. One of them is
the tendency for animals to group together stimuli that are not
perceptually similar (e.g., chairs and people) after training involv-
ing associations with a common response (Wasserman, DeVolder,
& Coppage, 1992) or reinforcer (Astley & Wasserman, 1999), a
phenomenon that is called learned stimulus equivalence. A simple
modification of our model that could account for this kind of
behavior involves adding a layer of hidden units between stimulus
and response representations and modifying the connection
weights in the final network according to the back-propagation
learning algorithm (Rumelhart, Hinton, & Williams, 1986). This
error-correcting learning rule has the convenient property of as-
signing similar representations in the hidden layer to stimuli that
have been paired with similar outcomes, which accounts for sev-
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eral aspects of learned stimulus equivalence according to our own
modeling work.

Another challenge for the future is finding a way to build
common-elements representations that better reflect the similarity
relations between stimuli in a categorization task. Currently, the
model shows considerable explanatory power by simply assuming
that stimuli in the same category share common representational
elements. If we were able to build representations that more
precisely captured the similarity between stimuli, then the explan-
atory power of the model would be even greater. One approach
that could be taken in this direction involves the use of additive
clustering techniques (Navarro & Griffiths, 2008; Shepard & Ara-
bie, 1979) to infer, from measures of stimulus generalization, the
common-elements representations that animals use to compute the
similarity between natural images. These representations could be
deployed to predict performance in categorization tasks, an ap-
proach that has been very useful in human categorization research
(Nosofsky, 1986).

One of the most important aspects of natural image classifica-
tion that is left unexplained by our model is how a representation
that is composed of stimulus-specific and category-specific ele-
ments can be abstracted from natural images by the visual system.
It seems clear to us that, for animals to exhibit categorization
performance that is invariant across different members of a cate-
gory, some more or less invariant aspect(s) of the stimulus should
be extracted from the images to control behavior, but the question
as to exactly how this process occurs is still open. Theories of
human object recognition could be very useful to guide research
along this line. These theories focus mainly on describing the
format of the representations that are stored to achieve invariant
recognition and how they are extracted from the visual input
(Palmeri & Gauthier, 2004), precisely the kind of processing that
is not addressed by our model.

For example, according to the theory of recognition by compo-
nents (RBC; Biederman, 1987), we might expect members of a
category to share a high percentage of perceptual units, or geons,
and for those geons to be spatially arranged in similar ways,
despite possible disparities in other stimulus-specific geons or
surface properties. Support for RBC has been reported for pigeons
(for a review, see Kirkpatrick, 2001), which makes this and similar
structural description theories particularly promising for future
research and theoretical development. As mentioned before, there
are also important links between the representation that is imple-
mented in our model and the one that is proposed by hierarchical
models of object recognition based on properties of the primate
visual cortex (Serre et al., 2005, 2007); such hierarchical models
directly extract from natural images a representation that is com-
posed of units with varying levels of specificity and invariance.

It is an open question whether the process of extracting invariant
information from natural images is the same in different species,
although there is growing evidence that humans and pigeons use
similar features in at least some object recognition tasks (Gibson,
Lazareva, Gosselin, Schyns, & Wasserman, 2007; Gibson, Was-
serman, Gosselin, & Schyns, 2005; Lazareva, Wasserman, & Bied-
erman, 2008). On the other hand, theories of object recognition and
natural image classification are relatively silent as to the mecha-
nisms by which different properties of a stimulus gain control over
performance in an identification task as a function of the demands
that such tasks impose (Palmeri & Gauthier, 2004).

Error-driven learning is a natural candidate for such a mecha-
nism, and we have shown how our model suggests ways to
empirically test for the presence of this form of learning in natural
image categorization. The experimental designs that we used in the
two experiments reported here could be easily adapted to the study
of natural image categorization in humans.

In fact, we have done some preliminary work with humans,
using a blocking design like the one described here for our first
experiment. To our surprise, the results have been very similar to
those found with pigeons. Thus, we have encouraging evidence
suggesting that the same associative learning principles may un-
derlie natural image categorization in animals and people. More
generally, our model provides a fresh way of thinking about visual
categorization that may prove useful in designing experimental
tests for the applicability of different learning rules to this behav-
ioral phenomenon in any species.

In sum, although it is not altogether clear whether the mecha-
nisms that are involved in natural image classification are the same
across different species, growing evidence suggests that common
principles underlie the visual categorization behaviors of birds and
primates, both in the extraction of invariant and specific informa-
tion from natural images and in the associative processes that
determine which of these two types of information is more useful
in solving a specific behavioral task. Our model represents a step
toward better understanding the latter process by proposing that
associative learning principles can explain the way in which dif-
ferent stimulus properties acquire control over behavior in natural
image categorization.

We have presented a theoretical framework that (a) offers a
much-needed organization and interpretation of established empir-
ical findings in the animal literature on natural image categoriza-
tion, (b) makes strong links to other important areas of animal
learning theory, (c) paves the way for future theoretical develop-
ment, and (d) has true heuristic value by stimulating new behav-
ioral tests like those reported in this article. There is still much
work to be done to gain a full understanding of natural image
categorization in different species, but it is clear that theoretical
efforts like the one we have offered here are necessary to attain this
goal.

References

Aitken, M. R. F., Bennett, C. H., McLaren, I. P. L., & Mackintosh, N. J.
(1996). Perceptual differentiation during categorization learning by pi-
geons. Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 22, 43–50.

Ashby, F. G. (1992). Multidimensional models of categorization. In F. G.
Ashby (Ed.), Multidimensional models of perception and cognition (pp.
449–483). Hillsdale, NJ: Erlbaum.

Ashby, F. G., & Lee, W. W. (1993). Perceptual variability as a fundamental
axiom of perceptual science. In S. C. Masin (Ed.), Foundations of
perceptual theory (pp. 369–399). Amsterdam, the Netherlands: Elsevier.

Astley, S. L., & Wasserman, E. A. (1992). Categorical discrimination and
generalization in pigeons: All negative stimuli are not created equal.
Journal of Experimental Psychology: Animal Behavior Processes, 18,
193–207.

Astley, S. L., & Wasserman, E. A. (1999). Superordinate category forma-
tion in pigeons: Association with a common delay or probability of food
reinforcement makes perceptually dissimilar stimuli functionally equiv-
alent. Journal of Experimental Psychology: Animal Behavior Processes,
25, 415–432.

378 SOTO AND WASSERMAN



Atkinson, R. R., & Estes, W. K. (1963). Stimulus sampling theory. In R. D.
Luce & R. B. Bush (Eds.), Handbook of mathematical psychology (pp.
212–268). New York, NY: Wiley.

Aust, U., & Huber, L. (2001). The role of item- and category-specific
information in the discrimination of people versus nonpeople images by
pigeons. Animal Learning & Behavior, 29, 107–119.

Aust, U., & Huber, L. (2002). Target-defining features in a “people-
present/people-absent” discrimination task by pigeons. Animal Learning
& Behavior, 30, 165–176.

Aydin, A., & Pearce, J. M. (1994). Prototype effects in categorization by
pigeons. Journal of Experimental Psychology: Animal Behavior Pro-
cesses, 20, 264–277.

Baddeley, R., Abbott, L. F., Booth, M. C. A., Sengpiel, F., Freeman, T.,
Wakeman, E. A., & Rolls, E. T. (1997). Responses of neurons in primary
and inferior temporal visual cortices to natural scenes. Proceedings of
the Royal Society: Biological Sciences, 264(B), 1775–1783.

Bhatt, R. S., Wasserman, E. A., Reynolds, W. F., & Knauss, K. S. (1988).
Conceptual behavior in pigeons: Categorization of both familiar and
novel examples from four classes of natural and artificial stimuli. Jour-
nal of Experimental Psychology: Animal Behavior Processes, 14, 219–
234.

Biederman, I. (1987). Recognition-by-components: A theory of human
image understanding. Psychological Review, 94, 115–147.

Blough, D. S. (1975). Steady state data and a quantitative model of operant
generalization and discrimination. Journal of Experimental Psychology:
Animal Behavior Processes, 1, 3–21.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classifica-
tion network outputs, with relationships to statistical pattern recognition.
In F. Fougelman-Soulie & J. Herault (Eds.), Neurocomputing: Algo-
rithms, architectures and applications (pp. 227–236). New York, NY:
Springer-Verlag.

Cook, R. G. (Ed.). (2001). Avian visual cognition. Retrieved from http://
www.pigeon.psy.tufts.edu/avc/

Cook, R. G., & Smith, J. D. (2006). Stages of abstraction and exemplar
memorization in pigeon category learning. Psychological Science, 17,
1059–1067.

Edwards, C. A., & Honig, W. K. (1987). Memorization and feature-
selection in the acquisition of natural concepts in pigeons. Learning and
Motivation, 18, 235–260.

Estes, W. K. (1986). Array models for category learning. Cognitive Psy-
chology, 18, 500–549.

Felsen, G., & Dan, Y. (2005). A natural approach to studying vision.
Nature Neuroscience, 8, 1643–1646.

Fetterman, J. G. (1996). Dimensions of stimulus complexity. Journal of
Experimental Psychology: Animal Behavior Processes, 22, 3–18.

Foldiak, P., & Young, M. P. (2002). Sparse coding in the primate cortex.
In M. A. Arbib (Ed.), The handbook of brain theory and neural networks
(pp. 1064–1068). Cambridge, MA: MIT Press.

Geisler, W. S. (2008). Visual perception and the statistical properties of
natural scenes. Annual Review of Psychology, 59, 167–192.

Gibson, B. M., Lazareva, O. F., Gosselin, F., Schyns, P. G., & Wasserman,
E. A. (2007). Nonaccidental properties underlie shape recognition in
mammalian and nonmammalian vision. Current Biology, 17, 336–340.

Gibson, B. M., Wasserman, E. A., Frei, L., & Miller, K. (2004). Recent
advances in operant conditioning technology: A versatile and affordable
computerized touchscreen system. Behavior Research Methods, Instru-
ments, and Computers, 36, 355–362.

Gibson, B. M., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005).
Applying bubbles to localize features that control pigeons’ visual dis-
crimination behavior. Journal of Experimental Psychology: Animal Be-
havior Processes, 31, 376–382.

Gluck, M. A. (1991). Stimulus generalization and representation in adap-
tive network models of category learning. Psychological Science, 2,
50–55.

Gluck, M. A. (1992). Stimulus sampling and distributed representations in
adaptive network theories of learning. In A. Healy, S. Kosslyn, & R.
Shiffrin (Eds.), From learning theory to connectionist theory: Essays in
honor of William K. Estes (pp. 169–199). Hillsdale, NJ: Erlbaum.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category
learning: An adaptive network model. Journal of Experimental Psychol-
ogy: General, 117, 227–247.

Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychol-
ogy, 49, 585–612.

Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability.
Providence, RI: American Mathematical Society.

Harris, J. A. (2006). Elemental representations of stimuli in associative
learning. Psychological Review, 113, 584–605.

Herrnstein, R. J. (1961). Relative and absolute strength of response as a
function of frequency of reinforcement. Journal of the Experimental
Analysis of Behavior, 4, 267–272.

Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental
Analysis of Behavior, 13, 243–266.

Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach.
Cognition, 37, 133–166.

Herrnstein, R. J., & de Villiers, P. A. (1980). Fish as a natural category for
people and pigeons. In G. H. Bower (Ed.), The psychology of learning
and motivation (Vol. 14, pp. 59–95). New York, NY: Academic Press.

Herrnstein, R. J., & Loveland, D. H. (1964, October 23). Complex visual
concept in the pigeon. Science, 146, 549–551.

Huber, L. (2001). Visual categorization in pigeons. In R. G. Cook (Ed.),
Avian visual cognition. Retrieved from http://www.pigeon.psy.tufts.edu/
avc/huber/

Husband, S., & Shimizu, T. (2001). Evolution of the avian visual system.
In R. G. Cook (Ed.), Avian visual cognition. Retrieved from http://
www.pigeon.psy.tufts.edu/avc/husband

Jenkins, H. M., & Sainsbury, R. S. (1970). Discrimination learning with the
distinctive feature on positive or negative trials. In D. I. Mostofsky (Ed.),
Attention: Contemporary theory and analysis (pp. 239–273). New York,
NY: Appleton-Century-Crofts.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4, 237–
285.

Kamin, L. J. (1969). Selective association and conditioning. In N. J.
Mackintosh & W. K. Honig (Eds.), Fundamental issues in associative
learning (pp. 42–64). Halifax, Nova Scotia, Canada: Dalhousie Univer-
sity Press.

Kendrick, D. F., Wright, A. A., & Cook, R. G. (1990). On the role of
memory in concept learning by pigeons. Psychological Record, 40,
359–371.

Kirkpatrick, K. (2001). Object recognition. In R. G. Cook (Ed.), Avian
visual cognition. Retrieved from http://www.pigeon.psy.tufts.edu/avc/
kirkpatrick/

Konorski, J. (1948). Conditioned reflexes and neuron organization. Cam-
bridge, England: Cambridge University Press.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist
model of category learning. Psychological Review, 99, 22–44.

Kruschke, J. K. (2001). Toward a unified model of attention in associative
learning. Journal of Mathematical Psychology, 45, 812–863.

Kruschke, J. K. (2003). Attention in learning. Current Directions in Psy-
chological Science, 12, 171–175.

Kruschke, J. K. (2008). Models of categorization. In R. Sun (Ed.), The
Cambridge handbook of computational psychology (pp. 267–301). New
York, NY: Cambridge University Press.

Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2006). Effects of
stimulus manipulations on visual categorization in pigeons. Behavioural
Processes, 72, 224–233.

Lazareva, O. F., & Wasserman, E. A. (2008). Categories and concepts in

379COMMON-ELEMENTS MODEL OF CATEGORIZATION



animals. In J. H. Byrne (Ed.), Learning and memory: A comprehensive
reference (pp. 197–226). Oxford, England: Academic Press.

Lazareva, O. F., Wasserman, E. A., & Biederman, I. (2008). Pigeons and
humans are more sensitive to nonaccidental than to metric changes in
visual objects. Behavioural Processes, 77, 199–209.

Lea, S. E. G., & Wills, A. J. (2008). Use of multiple dimensions in learned
discriminations. Comparative Cognition & Behavior Reviews, 3, 115–
133.

Lea, S. E. G., Wills, A. J., & Ryan, C. M. E. (2006). Why are artificial
polymorphous concepts so hard for birds to learn? Quarterly Journal of
Experimental Psychology, 59, 251–267.

Loidolt, M., Aust, U., Meran, I., & Huber, L. (2003). Pigeons use item-
specific and category-level information in the identification and catego-
rization of human faces. Journal of Experimental Psychology: Animal
Behavior Processes, 29, 261–276.

Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal
of the Experimental Analysis of Behavior, 21, 475–483.

Luce, R. D. (1959). Individual choice behavior: A theoretical analysis.
New York, NY: Wiley.

Mackintosh, N. J. (1995). Categorization by people and pigeons: The 22nd
Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychol-
ogy: Human Experimental Psychology, 48(A), 193–214.

Mackintosh, N. J. (2000). Abstraction and discrimination. In C. Heyes & L.
Huber (Eds.), The evolution of cognition (pp. 123–141). Cambridge,
MA: MIT Press.

McLaren, I. P. L., Bennett, C. H., Guttmannahir, T., Kim, K., & Mackin-
tosh, N. J. (1995). Prototype effects and peak shift in categorization.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 21, 662–673.

McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of
associative learning: I. Latent inhibition and perceptual learning. Animal
Learning & Behavior, 28, 211–246.

McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and
elemental representation: II. Generalization and discrimination. Animal
Learning & Behavior, 30, 177–200.

Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships
between item and category learning: Evidence that abstraction is not
automatic. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 9, 607–625.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification
learning. Psychological Review, 85, 207–238.

Miller, R. R., Barnet, R. C., & Grahame, N. J. (1995). Assessment of the
Rescorla–Wagner model. Psychological Bulletin, 117, 363–386.

Navarro, D. J., & Griffiths, T. L. (2008). Latent features in similarity
judgments: A nonparametric Bayesian approach. Neural Computation,
20, 2597–2628.

Neimark, E. D., & Estes, W. K. (Eds.). (1967). Stimulus sampling theory.
San Francisco, CA: Holden-Day.

Nosofsky, R. M. (1984). Choice, similarity, and the context theory of
classification. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 10, 104–114.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology: Gen-
eral, 115, 39–57.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining
exemplar-based category representations and connectionist learning
rules. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 18, 211–233.

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs.
Current Opinion in Neurobiology, 14, 481–487.

Palmeri, T. J., & Gauthier, I. (2004). Visual object understanding. Nature
Reviews Neuroscience, 5, 291–303.

Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physi-

ological activity of the cerebral cortex. London, England: Oxford Uni-
versity Press.

Pearce, J. M. (1987). A model for stimulus generalization in Pavlovian
conditioning. Psychological Review, 94, 61–73.

Pearce, J. M. (1994). Similarity and discrimination: A selective review and
a connectionist model. Psychological Review, 101, 587–607.

Pearce, J. M. (2002). Evaluation and development of a connectionist theory
of configural learning. Animal Learning & Behavior, 30, 73–95.

Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Varia-
tions in the effectiveness of conditioned but not of unconditioned stim-
uli. Psychological Review, 87, 532–552.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas.
Journal of Experimental Psychology, 77, 353–363.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive
Psychology, 3, 382–407.

Rescorla, R. A. (1976). Stimulus generalization: Some predictions from a
model of Pavlovian conditioning. Journal of Experimental Psychology:
Animal Behavior Processes, 2, 88–96.

Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it
is. American Psychologist, 43, 151–160.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian condi-
tioning: Variations in the effectiveness of reinforcement and nonrein-
forcement. In A. H. Black & W. F. Prokasy (Eds.), Classical condition-
ing II: Current theory and research (pp. 64–99). New York, NY:
Appleton-Century-Crofts.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart & J. L.
McClelland (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition (Vol. 1, pp. 318–362). Cambridge, MA:
MIT Press.

Sainsbury, R. S. (1971). Feature-positive effect and simultaneous discrim-
ination learning. Journal of Experimental Child Psychology, 11, 347–
356.

Sattath, S., & Tversky, A. (1987). On the relation between common and
distinctive feature models. Psychological Review, 94, 16–22.

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., & Poggio, T.
(2005). A theory of object recognition: Computations and circuits in the
feedforward path of the ventral stream in primate visual cortex (MIT AI
Memo No. 2005–036/CBCL). Retrieved from http://www.ai.mit.edu/
publications/browse/2005browse.shtml

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture
accounts for rapid categorization. Proceedings of the National Academy
of Sciences, USA, 104, 6424–6429.

Shanks, D. R. (1991). Categorization by a connectionist network. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 17,
433–443.

Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of
similarities as combinations of discrete overlapping properties. Psycho-
logical Review, 86, 87–123.

Shimizu, T., & Bowers, A. N. (1999). Visual circuits of the avian telen-
cephalon: Evolutionary implications. Behavioural Brain Research, 98,
183–191.

Siegel, S., & Allan, L. G. (1996). The widespread influence of the
Rescorla–Wagner model. Psychonomic Bulletin & Review, 3, 314–321.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and
neural representation. Annual Review of Neuroscience, 24, 1193–1216.

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early
epochs of category learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 24, 1411–1436.

Spence, K. W. (1937). The differential response in animals to stimuli
varying within a single dimension. Psychological Review, 44, 430–444.

Sutton, J. E., & Roberts, W. A. (2002). Failure to find evidence of stimulus
generalization within pictorial categories in pigeons. Journal of the
Experimental Analysis of Behavior, 78, 333–343.

380 SOTO AND WASSERMAN



Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive
networks: Expectation and prediction. Psychological Review, 88, 135–
170.

Vinje, W. E., & Gallant, J. L. (2000, February 18). Sparse coding and
decorrelation in primary visual cortex during natural vision. Science,
287, 1273–1276.

Vogel, E. H., Castro, M. E., & Saavedra, M. A. (2004). Quantitative
models of Pavlovian conditioning. Brain Research Bulletin, 63, 173–
202.

Wagner, A. R. (1981). SOP: A model of automatic memory processing in
animal behavior. In N. E. Spear & R. R. Miller (Eds.), Information
processing in animals: Memory mechanisms (pp. 5–47). Hillsdale, NJ:
Erlbaum.

Wagner, A. R. (2003). Context-sensitive elemental theory. Quarterly Jour-
nal of Experimental Psychology: Comparative and Physiological Psy-
chology, 56(B), 7–29.

Wagner, A. R., Logan, F. A., Haberlandt, K., & Price, T. (1968). Stimulus
selection in animal discrimination learning. Journal of Experimental
Psychology, 76, 171–180.

Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian condi-
tioning: Application of a theory. In R. A. Boakes & M. S. Holliday
(Eds.), Inhibition and learning (pp. 301–336). New York, NY: Aca-
demic Press.

Wasserman, E. A. (1974). Stimulus-reinforcer predictiveness and selective
discrimination learning in pigeons. Journal of Experimental Psychology,
103, 284–297.

Wasserman, E. A. (1993). Comparative cognition: Toward a general un-
derstanding of cognition in behavior. Psychological Science, 4, 156–
161.

Wasserman, E. A. (1995). The conceptual abilities of pigeons. American
Scientist, 83, 246–255.

Wasserman, E. A., & Bhatt, R. S. (1992). Conceptualization of natural and
artificial stimuli by pigeons. In W. K. Honig & J. G. Fetterman (Eds.),
Cognitive aspects of stimulus control (pp. 203–223). Hillsdale, NJ:
Erlbaum.

Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Non-
similarity-based conceptualization in pigeons via secondary or mediated
generalization. Psychological Science, 3, 374–378.

Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual
behavior in pigeons: Categories, subcategories, and pseudocategories.
Journal of Experimental Psychology: Animal Behavior Processes, 14,
235–246.

Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits. In 1960
IRE WESCON convention record (pp. 96–104). New York, NY: Insti-
tute of Radio Engineers.

Wills, A. J., Reimers, S., Stewart, N., Suret, M., & McLaren, I. P. L.
(2000). Tests of the ratio rule in categorization. Quarterly Journal of
Experimental Psychology: Human Experimental Psychology, 53(A),
983–1011.

Young, M. E., & Wasserman, E. A. (2002). Limited attention and cue order
consistency affect predictive learning: A test of similarity measures.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 28, 484–496.

Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K. R., &
Rattermann, M. J. (2008). Concept learning in animals. Comparative
Cognition & Behavior Reviews, 3, 13–45.

Received July 29, 2009
Revision received December 8, 2009

Accepted December 10, 2009 �

381COMMON-ELEMENTS MODEL OF CATEGORIZATION


