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Abstract A common question in perceptual science is to
what extent different stimulus dimensions are processed inde-
pendently. General recognition theory (GRT) offers a formal
framework via which different notions of independence can
be defined and tested rigorously, while also dissociating per-
ceptual from decisional factors. This article presents a new
GRT model that overcomes several shortcomings with previ-
ous approaches, including a clearer separation between per-
ceptual and decisional processes and a more complete descrip-
tion of such processes. The model assumes that different
individuals share similar perceptual representations, but vary
in their attention to dimensions and in the decisional strategies
they use. We apply the model to the analysis of interactions
between identity and emotional expression during face recog-
nition. The results of previous research aimed at this problem
have been disparate. Participants identified four faces, which
resulted from the combination of two identities and two ex-
pressions. An analysis using the new GRT model showed a
complex pattern of dimensional interactions. The perception
of emotional expression was not affected by changes in iden-
tity, but the perception of identity was affected by changes in
emotional expression. There were violations of decisional
separability of expression from identity and of identity from
expression, with the former being more consistent across
participants than the latter. One explanation for the disparate

results in the literature is that decisional strategies may have
varied across studies and influenced the results of tests of
perceptual interactions, as previous studies lacked the ability
to dissociate between perceptual and decisional interactions.
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and recognition

Introduction

A common goal in perceptual science is to determine whether
some stimulus dimensions or components are “special,” in the
sense of being processed and represented independently from
other types of information. In vision, for example, much
research has focused on determining whether there is inde-
pendent processing of object and spatial visual information
(e.g., Ungerleider and Haxby 1994), different kinds of shape
properties (e.g., Blais et al. 2009; Stankiewicz 2002; Vogels
et al. 2001), different semantic categories of objects (e.g., de
Beeck et al. 2008; Kanwisher 2000), identity and expression
in faces (e.g., Bruce and Young 1986; Haxby et al. 2000), etc.

In the behavioral literature, a variety of concepts has been
proposed to describe interactions in the processing of sensory
dimensions (see Ashby and Townsend 1986), each of them
related to one or more operational definitions of dimensional
interaction. Much behavioral research on the independence of
stimulus dimensions has been performed by testing interac-
tions through such operational definitions.

The best current framework for the analysis and interpre-
tation of studies aimed at testing different forms of indepen-
dence between stimulus dimensions is offered by general
recognition theory (GRT; Ashby and Townsend 1986). GRT
is an extension of signal detection theory to cases in which
stimuli vary on more than one dimension. GRT inherits from
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signal detection theory the ability to dissociate perceptual
from decisional processes in perception, while also offering
a formal framework in which different forms of dimensional
interaction can be defined and studied.

Unfortunately, several severe restrictions of the GRTmodel
used in the past greatly limit its usefulness. For the most
popular experimental designs, GRT has more free parameters
than there are degrees of freedom in the data. Thus, it is
impossible to fit the full model to these data and so some
restrictive assumptions must be imposed. Even with such
assumptions, the small number of degrees of freedom in-
creases the risk of over-fitting. Another restriction is that the
model must be fit separately to the confusion matrix of each
individual participant. For each fit, one can ask whether two
dimensions interact, but what conclusion can be drawn if the
data of 13 participants show some form of interaction and the
data of 7 participants do not show such interaction? Finally,
recent research has shown that traditional GRT analyses can
not distinguish clearly between decisional and perceptual
interactions between dimensions (Mack et al. 2011; Silbert
and Thomas 2013).

This article describes a generalization of GRT that solves
all of these problems. Briefly, the model we describe was
inspired by individual-differences multidimensional scaling
(INDSCAL; Carroll and Chang 1970). The model simulta-
neously fits the data of all participants. It assumes that all
participants share the same perceptual distributions, but like
INDSCAL, it allows each participant to divide his or her
attention differently between the two stimulus dimensions.
In addition, unlike INDSCAL, the new model allows each
participant to use unique decision bounds. As we will see, the
model gives a remarkably accurate simultaneous account of
the data from many different participants, and as a result, we
believe it offers the strongest method currently available for
studying perceptual and decisional interactions.

The following sections provide a more detailed description
of GRT, of the types of interactions defined within GRT, and
of the problems with traditional GRT approaches. Then the
new generalized GRT model is presented and applied to the
analysis of interactions between identity and emotional ex-
pression in face perception.

General recognition theory

Overview

As in signal detection theory, GRTassumes that the perceptual
effects of a stimulus are not fixed, but vary across stimulus
presentations according to some probability distribution.
Some applications of GRT do not make any assumptions
about the shape of such perceptual distributions (e.g., Ashby

and Maddox 1994; Ashby and Townsend 1986), but most
assume that they are multivariate normal.

The most common applications of GRT are to tasks in
which stimuli are constructed from the factorial combination
of two levels of two stimulus components, A and B, resulting
in four stimuli: A1B1, A2B1, A1B2 and A2B2. In an identifi-
cation experiment, participants are shown one of these four
stimuli (chosen randomly) on each trial and are then required
to identify uniquely which stimulus was presented. The data
from this experiment are typically collected in a 4 × 4 confu-
sion matrix, with a row for each stimulus and a column for
each response. The entry in row i and column j lists the
number of trials that the participant responded with the jth
response when stimulus i was presented. This matrix has 12
degrees of freedom (4 × 3) because the sum of entries in each
row is constrained to equal the number of times the associated
stimulus was presented in the experiment.

Figure 1 shows an example of a multivariate normal GRT
model for such a typical 2 × 2 design. Each stimulus has a
different distribution of perceptual effects, represented by an
ellipse. The ellipse describes the shape that a scatterplot
would take if many random samples were drawn from
the associated perceptual distribution. The lines are the
decision bounds that separate the perceptual plane into
four response regions. GRT can be used to make infer-
ences about perceptual and decisional interactions by
studying the perceptual distributions and decision bounds of
the best-fitting model.

GRT rigorously defines a number of different types of
dimensional interaction (Ashby and Townsend 1986), the
most popular of which are perceptual separability, perceptual
independence and decisional separability. Dimension A is
perceptually separable from dimension B if the perception of
A does not depend on the level of dimension B. In GRT, this
condition holds if and only if the marginal distribution of
perceptual effects along dimension A does not depend on
the level of B. Marginal distributions for dimensions A and
B are depicted at the bottom and left of Fig. 1, respectively. It
can be seen that the marginal distributions for B1 are the same
for both levels of A. Similarly, the marginal distributions for
B2 are also the same for both levels of A. This means that
dimension B is perceptually separable from dimension A. On
the other hand, the marginal distributions for dimension A are
closer for level 1 of dimension B than for level 2 of dimension
B. Thus, dimension A is not perceptually separable from
dimension B.

Dimension A is decisionally separable from dimension B if
the decision about the level of A does not depend on the
perceived value of component B. In GRT this condition holds
if and only if the decision bounds are vertical and horizontal
lines. In Figure 1, dimension A is decisionally separable from
dimension B, but dimension B is not decisionally separable
from dimension A.

Psychon Bull Rev



Perceptual and decisional separabilities deal with interac-
tions between dimensions that are manifest by comparing
perceptual representations across stimuli. Perceptual indepen-
dence, on the other hand, deals with dependencies that occur
when a single stimulus is perceived. Two dimensions are
perceived independently for stimulus AiBj if the perceived
value on dimension A is statistically independent of the per-
ceived value on dimension B. In the multivariate normal
model, which considers only linear relations between dimen-
sions, this means that two dimensions are independent for
stimulus AiBj if their correlation is zero. For example, percep-
tual independence holds for all stimuli in Fig. 1 except A2B2,
which is the only one in which the contour of equal likelihood
is diagonally oriented, representing a negative correlation
between dimensions.

Once identification data are collected, two approaches can
be used to analyze the resulting empirical confusion matrix.
The summary statistics approach (Ashby and Townsend 1986;
Kadlec and Townsend 1992a, 1992b) consists of computing
various summary statistics from the confusion matrix and then
checking whether these satisfy certain conditions that are
diagnostic for perceptual separability, decisional separability,
or perceptual independence. The model-based approach
(Ashby and Lee 1991; Thomas 2001) consists of fitting one
or more GRT models to the empirical confusion matrix and
selecting the model that describes the data best. The focus of
the present work is on expanding and improving the model-
based approach.

Problems with GRT

As mentioned above, despite its usefulness, GRT suffers from
several weaknesses when applied to the 2 × 2 identification

experiment. These weaknesses are not inherent to the theory.
They either arise exclusively when the 2 × 2 design is used or
they stem from current practice in the application of GRT.
Even so, these problems are not trivial, as the 2 × 2 design is
the smallest design (in terms of numbers of stimuli and re-
sponses) that allows an evaluation of the most important types
dimensional interaction. The task is simple and easy to learn,
and the experiment does not need to be overly long to sample
enough data to estimate each of the 16 cells in the confusion
matrix accurately. The ease with which a 2 × 2 experiment can
be run and analyzed has made it very popular among
researchers.

A number of the weaknesses vanish when GRT is applied
to data from a 3 × 3 identification experiment (e.g., Ashby and
Lee 1991), which requires training nine stimulus-response
assignments and estimating 81 entries in the confusion matrix.
However, this requires a long experiment (5 days in
Experiment 1 of Ashby and Lee 1991) and the possibility of
disrupting processing due to high working memory require-
ments (i.e., since the participant must memorize nine response
labels). A further advantage of the 2 × 2 design over the 3 × 3
design is that only the former allows testing separability of
stimulus “components” that cannot be ordered along continu-
ous dimensions (e.g., there is no correct way of ordering two
faces along an “identity” dimension). In this case, the GRT
model for a 2 × 2 design is not influenced by the way in which
we choose to order the levels of each component; that is,
levels 1 and 2 in one dimension can be reversed without
changing conclusions about dimensional interactions. This is
not true of the GRTmodel for a 3 × 3 design, in which altering
the order of the levels along a dimension is likely to alter the
results of our analyses.

As mentioned above, the first problem with applications of
GRT is that the number of degrees of freedom provided by the
data in a 2 × 2 experiment is too small to fit the full model. The
full model has 20 free parameters, but the 4 × 4 empirical
confusion matrix that results from the Fig. 1 experiment has
only 12 degrees of freedom. Thus, experimenters using the 2 ×
2 design must fix some parameters to constant values in order
to fit a GRT model to data. In general, fixing any parameter in
the model will constrain the researcher's ability to evaluate a
specific form of dimensional interaction. For example,
constraining the decision bounds to be horizontal or vertical
lines has been common in previous applications (e.g., Silbert
2012; Thomas 2001) and doing so is equivalent to making the
assumption that decisional separability holds for the task
under study. Similarly, fixing all variances to the same value
(e.g., Fitousi and Wenger 2013; Silbert 2012) assumes a form
of perceptual separability in which perceptual noise along
each dimension does not depend on the level of the other
dimension. Ideally, a full characterization of the interactions
between two dimensions should not rely on any a priori
assumptions about how the dimensions interact (Silbert 2012).

Fig. 1 Example of a multivariate normal GRT model for an experiment
with 2 dimensions and two levels in each dimension (2×2 design).
Ellipses represent contours of equal likelihood for the perceptual distri-
bution of a specific stimulus. The univariate normal distributions repre-
sent marginal distributions
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A second, related problem is that the small number of data
points available from a 2 × 2 design, relative to the number of
parameters that need to be fit, means that there is always a risk
of model over fitting. When several models are fit to the data,
as we fit increasingly complex models we increase the likeli-
hood that the model is fit to random error instead of describing
real properties of perceptual and decisional processes. This
can lead to variability in the results across participants in
aspects that we might not expect to be variable, such as
perceptual independence and separability (e.g., Fitousi and
Wenger 2013; Mestry et al. 2012; Silbert 2012).

A third problem is that systematic methods for pooling
results across participants have rarely been explored. The
interpretation of the overall pattern of results from each ex-
periment is usually left to the researcher's judgment, instead of
having a statistically sound basis. One solution to this problem
has been provided by Silbert (2012), who proposed a hierar-
chical model in which the parameters governing each individ-
ual's perceptual and decision processes are drawn from normal
distributions, each with a different mean and variance hyper-
parameter. This allows examining group effects by estimating
the values of such hyper-parameters. This model, however,
does not solve the first two problems mentioned earlier.

Finally, two recent publications have called into question
the validity of conclusions about decisional separability that
can be reached using GRT analyses. Mack and colleagues
(Mack et al. 2011) have shown through simulated data that,
when the summary statistics approach is used, some cases of
violations of perceptual separability are misclassified as vio-
lations of decisional separability. This issue is not critical
when one considers that most applications of GRT use the
summary statistics approach in conjunction with model-based
analyses or other tests. A more serious challenge has been
raised by Silbert and Thomas (2013), who showed analytical-
ly that a failure of decisional separability is non-identifiable in
the 2 × 2 identification experiment. That is, if the data from an
experiment can be fit by a GRT model in which decisional
separability fails, then it is always possible to find a different
GRT model in which decisional separability holds and that
predicts the exact same data pattern. This result is explained
schematically in Fig. 2. In the left panel, we see four percep-
tual distributions for the stimuli in a 2 × 2 identification
experiment. The solid lines represent the decision bounds used
by a participant in this experiment (the dotted lines should be
ignored for now). It can be seen that decisional separa-
bility fails for this participant. The right panel shows
that a simple transformation of the perceptual space
(rotating and shearing) leads to a model producing the
exact same response probabilities, but in which now
decisional separability does hold. Furthermore, the transfor-
mation also goes from a model with perceptual separability
and independence (left) to a model without perceptual sepa-
rability or independence (right).

GRTwith individual differences (GRT-wIND):
an extension to GRT

The GRT-wIND model is inspired by three-way multidimen-
sional scaling models (for a review, see Chaps. 21 and 22 in
Borg and Groenen 2005). Data analysis using these models is
also known as individual differences scaling, or INDSCAL,
after a popular algorithm used to find solutions (Carroll and
Chang 1970). These models assume that the similarity data
from a number of individuals can be explained by a common
perceptual space, but that the relative weight or saliency of the
dimensions of this space might be different for different
people.

A schematic representation of the new GRT-wIND model
is shown in Fig. 3. The model assumes that the structure of the
perceptual distributions is the same for all participants; that is,
some aspects of perception are universal, in particular the
relations between dimensions within stimuli (covariance of
each distribution) and across stimuli (the means of each dis-
tribution and the ratio of their variance along a dimension).
This is represented by a single set of perceptual distributions
in the “Group model” at the top of Fig. 3. On the other hand, it
is also assumed that attentional and decisional processes could
vary across individuals. This is represented by the three
models at the bottom of Fig. 3. Note first how all perceptual
interactions are the same across individual models. On the
other hand, each individual model has a different scaling of
the variances along a particular dimension, representing indi-
vidual attentional processes. For example, in Participant 1,
variances are extended in the direction of the y-axis,
representing the fact that this participant is paying little atten-
tion to dimension B. Participant 2 shows a different pattern, in
which variances are shrunk in the direction of the x-axis,
representing higher attention to dimension A. Each individual
participant model also has a different set of two decision
bounds that divide the perceptual space into response regions,
instantiating the assumption that decision processes might
vary across participants. For example, for Participant 3, both
bounds are orthogonal to the dimension they divide, whereas
this is not true for Participants 1 and 2.

Within the framework of GRT-wIND, perceptual separa-
bility and perceptual independence are phenomena that should
hold or fail for all participants in any given experiment.
Although attention might change how well an individual can
discriminate a dimension, it should not affect the structure of
perceptual interactions. On the other hand, decisional separa-
bility is a phenomenon that can hold in some individuals and
fail in others, or even vary for a single individual as a function
of factors such as training with a task.

To describe the model more specifically, assume we have
run a 2 × 2 identification experiment, in which stimuli vary
along two dimensions A and B, each with two levels indexed
by i = 1, 2, and j = 1, 2, respectively. Suppose there are N
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participants in the experiment, indexed by k = 1, 2,… N. The
GRT-wIND model for this experiment has 16 group parame-
ters, which control the distributions of perceptual effects.
These distributions are assumed to be bivariate normal and
common to all participants. Each distribution is described by a
mean vector:

μ!AiB j
¼

μAiB j1
μAiB j2

! "
; ð1Þ

and a covariance matrix:

ΣAiB j ¼
σ2
AiB j1 ρAiB j

σAiB j1σAiB j2

ρAiB j
σAiB j1σAiB j2 σ2

AiB j2

" #

; ð2Þ

where ρAiB j
is a correlation parameter. We can arbitrarily set

μA1B1
¼ 0; 0½ & and σA1B11 ¼ σA1B12 ¼ 1 , which fix the posi-

tion and scale of the final solution. The remaining group
parameters are two means and two variances for each of the
other perceptual distributions (4 × 3 = 12), plus a correlation
parameter for each distribution (4).

The model also has 6 parameters that describe processes
unique to each individual. Two of these parameters, κk and λk ,
control the level of attention that participant k allocates to each
dimension. We assume that the effect of attention to one
dimension is to increase the discriminability of stimuli along
that dimension. Within the GRT framework, this can be done
by either increasing the distance between means of distribu-
tions along the relevant dimension or by decreasing the vari-
ances of the distributions along the relevant dimension. Here,
we implement attention as affecting variances, because this is
consistent with previous modeling of attention using GRT
(Maddox et al. 2002) and because it seemed more straightfor-
ward and easier to interpret than modifying the distances
between means across subjects. The parameter κk > 0 repre-
sents a global level of attention. High values of κk decrease the
values of all variances, leading to fewer confusion errors in
general. The parameter λk is a selective attention parameter
that ranges from 0 to 1. A value of λk = 0.5 represents equal
attention to each dimension. High values of λk decrease the
variances on dimension A and increase the variances on
dimension B, representing selective attention to A. The

Fig. 2 Example of how, in the 2×2 design, a simple transformation of the
perceptual space can render a GRT model with violations of decisional
separability into a different GRT model yielding the same response

probabilities and no violations of decisional separability. A second set
of decision bounds is included to show why the same is not true for GRT-
wIND

Fig. 3 Schematic representation
of the GRT-wIND model.
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opposite is true for low values of λk. The covariancematrix for
the distribution of perceptual effects of AiBj in participant k is
equal to:

ΣAiB jk ¼

σ2
AiB j1

κkλk
ρAiB j

σAiB j1σAiB j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2
kλk 1−λkð Þ

q

ρAiB j

σAiB j1σAiB j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2
kλk 1−λkð Þ

q
σ2
AiB j2

κk 1−λkð Þ

2

6666664

3

7777775
ð3Þ

It can be seen that both parameters together determine the
ability of a subject at discriminating each dimension relative to
the group’s ability. When κkλk is greater than 1, the variance
along dimension A is smaller than in the group model, leading
to less overlap between perceptual distributions, representing
higher individual discriminability on dimension A. Avalue of
κkλk less than 1 increases the variance along dimension A
relative to the group model, leading to more overlap between
perceptual distributions on that dimension, and lower individ-
ual discriminability. Similarly, κk(1 – λk) > 1 decreases the
variance along dimension B and κk(1 – λk) < 1 increases the
variance along dimension B relative to the group solution.

The other four individual parameters describe the linear
decision bounds that are assumed to be unique to each partic-
ipant. Each single bound can be written as a discriminant
function:

hAk x1; x2ð Þ ¼ bAk1x1 þ bAk2x2 þ cAk ; ð4Þ

where hAk represents the discriminant function used to classify
component A by the kth subject. A similar equation can be
used to describe hBk , the discriminant function used to classify
component B by the kth subject. Only two of the three param-
eters bAk1 , bAk2 , and cAk are free however, because any line
can be described by two parameters. Thus, the parameters bAk1
and bBk2 were fixed to a value of 1.0. The discriminant
function has the property that it returns positive values for
points (x1, x2) falling on one side of the bound (the first
response area) and negative values for points on the other side
of the bound (the second response area). Because the two-
dimensional model has two linear bounds (hAk and hBk), four
parameters are required to describe those bounds for each
individual.

In the Appendix, we describe procedures to estimate the
parameters of a GRT-wIND model from identification data
using maximum likelihood estimation. We also describe how
to run statistical tests for perceptual independence, perceptual
separability and decisional separability once the model has
been fit to data. Traditionally, these tests are performed by
fitting different GRT models to the same data and comparing
them through a likelihood ratio test or through information
criteria (Thomas 2001; see Ashby and Soto 2014). The large
number of parameters in a GRT-wIND model can make this

strategy inconvenient, because fitting each single model to the
data is computationally expensive. Here we recommend a
different strategy, described in more detail below, in which
maximum-likelihood parameter estimates are tested against
expected values from null hypotheses using a Wald test (Wald
1943).

The GRT-wIND model solves all the problems with the
traditional application of GRT that were identified in the
Introduction. First, the full model can be fit to the data from
any identification experiment, as long as the number of par-
ticipants is large enough. This is because each additional
participant in the experiment contributes more data points than
the number of new parameters that must be estimated for that
individual, increasing the total number of degrees of freedom.
For the 2 × 2 design, each new participant adds data with 12
new degrees of freedom and requires the estimation of only 6
new parameters, so with N = 3 it is possible to fit the full
model, including the 16 group parameters.

Second, there is less risk of over-fitting using an GRT-
wIND model than using a traditional GRT model, especially
with small designs such as the popular 2 × 2 experiment. This
is because in most cases it is feasible to gather data frommany
participants and obtain a large number of degrees of freedom.
Using the 2 × 2 design, a sample size of 10 leads to 44 degrees
of freedom after fitting the full model; a sample size of 20
leads to 104 degrees of freedom after fitting the full model.

Third, because perceptual distributions are assumed to be
universal, all conclusions about perceptual factors are shared
by the whole group of participants. Thus, analyses of percep-
tual separability and independence do not lead to disparate
results for different individuals. Furthermore, individual dif-
ferences in behavior are modeled as differences in attention
and decision processes instead of as random error (Silbert
2012). This allows us to study these individual differences
and perhaps to test the model's assumptions.

Finally, GRT-wIND does not suffer from the problem of
non-identifiability of decisional separability in the 2 × 2
identification experiment, except in the extreme and unlikely
case in which all participants in the study use decision bounds
that are parallel to one another. If violations of decisional
separability are found and individual decision bounds have
slightly different slopes, then it is not possible to find an
equivalent model (i.e., producing the same response probabil-
ities) in which decisional separability holds for all participants,
unless the assumption of universal perception is violated. This
can be seen in Fig. 2, where the dotted line represents the
decision bound for a second participant in the experiment.
Note how the transformation applied in the right panel, lead-
ing to decisional separability for the first participant does not
lead to the same result for the second participant. The result
would be the same with any other pair of decision bounds,
unless they are parallel. Two separate transformations can be
found that would independently lead to decisional separability
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for each participant, but the resulting model would assume
different perceptual representations across participants. In the
Appendix, we offer a formal proof of the proposition that
decisional separability is non-identifiable in the Gaussian
GRT model with two or more bounds per dimension if and
only if all bounds for each dimension are parallel to one
another. We note that this condition for non-identifiability
applies not only to GRT-wIND, but also to the traditional
GRT model for designs larger than 2 × 2.

In the rest of this article, we apply GRT-wIND to study
interactions between identity and emotional expression in face
perception, with two goals in mind. The first is to explore how
well GRT-wIND can describe data from an identification
experiment compared to the traditional application of GRT.
If the assumptions of the model are correct, then it should fit
the data as well or better than individual GRT models, and
deviations from a perfect fit should be randomly distributed.
The second goal is to determine whether and how identity and
expression interact during face perception, using for the first
time an approach that clearly dissociates between different
forms of independence and between perceptual and decisional
factors.

An application to face perception

Researchers in face perception have shown much interest in
the issue of whether or not identity and emotional expression
are processed independently. This interest is due largely to the
fact that influential theories of face recognition have proposed
either completely independent (Bruce and Young 1986) or
partially independent (Haxby et al. 2000) processing of these
important dimensions.

Most studies addressing this issue have not found complete
independence of identity and emotion. Some studies that used
the Garner filtering task (Garner 1974) found an asymmetric
pattern of interactions, in which identity is separable from
expression, but expression is not separable from identity
(Baudouin et al. 2002; Schweinberger et al. 1999;
Schweinberger and Soukup 1998; for a comparative/
evolutionary analysis of this effect, see Soto and Wasserman
2011). This asymmetric interaction is also supported by the
overall pattern of results from experiments using a face adap-
tation paradigm (Ellamil et al. 2008; Fox and Barton 2007;
Fox et al. 2008; Pell and Richards 2013). However, other
studies have found interference in the processing of each
dimension when there are variations in the other (Fitousi and
Wenger 2013; Ganel and Goshen-Gottstein 2004; for facilita-
tion effects, see Yankouskaya et al. 2012), or a lack of such
interference effects (Etcoff 1984).

One problemwith these previous studies is that they did not
dissociate between different types of perceptual and decisional
interactions. Furthermore, it has been shown that only some

violations of separability lead to an interference effect in the
filtering task, whereas others cannot be observed using this
test (Ashby and Maddox 1994). Recently, Fitousi andWenger
(2013) applied GRT to the analysis of interactions between
emotional expression and identity, and found no violations of
perceptual independence in any of their participants, but vio-
lations of either perceptual or decisional separability in all
participants. However, these results were obtained using the
traditional GRT framework, so they are prone to all the short-
comings outlined previously.

Here, we take a new look at this problem by analyzing data
from a 2 × 2 identification design using GRT-wIND. This is
done with two goals in mind: (1) to evaluate the performance
of GRT-wIND in describing real identification data, and (2) to
analyze interactions between identity and emotional expres-
sion while distinguishing among different types of indepen-
dence and dissociating perceptual from decisional processes.

Method

Participants

Twenty-six undergraduates at the University of California
Santa Barbara were recruited to participate in this experiment.
Each participant was given class credit for participation.

Stimuli and apparatus

The stimuli were four grayscale images of male faces (see
Fig. 7), part of the California Facial Expression (CAFE)
database (Dailey et al. 2001). Images in this database were
obtained from individuals trained to produce correct expres-
sions according to the Facial Action Coding System (FACS;
Ekman et al. 1978). Each face showed one of two identities
with either a neutral or sad emotional expression. The identi-
ties were chosen in an attempt to avoid differences in discrim-
inability between the two identities and the two emotions
(Ganel and Goshen-Gottstein 2004). The faces were shown
through an elliptical aperture in a homogeneous gray screen;
this presentation revealed only inner facial features and hid
non-facial information, such as hairstyle and color.

Stimulus presentation, feedback, response recording and
response time measurement were controlled using MATLAB
augmented with the Psychophysics Toolbox (Brainard 1997),
running on a Macintosh computer. Responses were giv-
en on a standard Macintosh keyboard: the “d” key for
identity one with sad expression, the “f” key for identity
one with neutral expression, the “j” key for identity two
with sad expression, and the “k” key for identity two
with neutral expression.
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Procedures

The experiment lasted about 45 min and was composed of 12
blocks of 50 trials for a total of 600 trials. Participants were
told that there were four stimuli and each stimulus
corresponded to one of the assigned response keys; their task
was to learn the mapping between stimuli and response keys.
Participants were not verbally instructed about the correct
response for each stimulus because, in our experience, instruc-
tion is of little help to master difficult discrimination tasks
such as the one used here. Furthermore, participants still need
to go through a practice period in order to eliminate the effects
of initial perceptual learning from the data (see Lehky 2000)
and they could learn the stimulus-response mapping during
this period. A trial proceeded as follows: a crosshair appeared
on the screen for 200 ms prior to stimulus presentation. The
stimulus was presented for 16.667ms (at the refresh rate of the
monitor, 60 Hz). After the presentation participants were to
give a response using one of the four assigned response keys.
Feedback was displayed in the middle of the screen beginning
500 ms after the response was collected and consisted of the
word “Correct” in green font color or “Incorrect” in red font
color. If a response was too late (more than 5 s), participants
saw the words “Too Slow”. Feedback remained on screen for
500 ms, after which there was a 1-s intertrial interval. The
participants were allowed to rest between blocks if they
wished.

Results

The data from two participants were excluded from the anal-
ysis because their performance was at chance by the end of the
experiment. GRT is a model of asymptotic performance, not
of learning, so it is important to discard data during the
learning period when estimating individual participant confu-
sion matrices. Toward this end, learning curves were obtained
by averaging performance within a moving window of 101
trials, starting with the average of trials 1 to 101, moving the
window one trial up in each step (2–102, 3–103, and so on),
and ending with the average of trials 500 to 600. An expo-
nential function was fit to the resulting 500 average points that
comprised the learning curves using least-squares estimation.
The point in the best-fitting exponential curve where the slope
was smaller than 0.001 for the first time was used as a cutoff:
only data after this point were used to build individual confu-
sion matrices. This cutoff ranged from trial 53 to 320 across
participants, with a mean of 150.5.

Table 1 shows the average confusion matrix, obtained by
transforming individual confusion matrices into response pro-
portions and averaging those proportions across participants
(individual confusion matrices can be found in the

supplementary material). The numbers in parentheses repre-
sent the minimum and maximum proportion found across
subjects.

Model fit to the data

GRT-wIND was fit to the data from individual confusion
matrices using the procedures outlined in the Appendix. To
facilitate finding the global maximum of the likelihood func-
tion instead of a local maximum, the optimization was run 60
times, each time with different random starting values for the
parameters. The solution with highest maximum likelihood
was chosen as the best-fitting GRT-wIND model.

The best-fitting GRT-wIND model was used to estimate
response probabilities for each cell in each participant's con-
fusion matrix. Figure 4 shows these estimated probabilities
plotted against the corresponding observed response propor-
tions. The data from each participant is plotted using a differ-
ent symbol. The diagonal dotted line represents a perfect fit. It
can be seen that there is a high level of correspondence
between the 384 (i.e., 24 participants×16 values in each
matrix) observed and estimated values. In fact, the model
accounted for 99.52 % of the variance in the data (r =
0.9976). More importantly, the deviations from a perfect fit
shown in Fig. 4 (i.e., the differences between observed and
predicted values, or residuals) seem to be distributed random-
ly around the dashed line across all values of the estimated
probabilities. This observation was statistically confirmed by
the results of a Durbin-Watson test, which indicated that the
serial correlation in the residuals was not significantly differ-
ent from zero, DW = 1.976, P > 0.5. A non-random distribu-
tion of residuals should produce a serial correlation different
from zero. This suggests that all systematic variability in the
data was captured by the model.

An important goal of the present experiment was to com-
pare how well GRT-wIND would explain identification data
compared to traditional GRT models. Unfortunately, a
straightforward comparison is difficult in this case because,
as indicated earlier, the full traditional GRT model cannot be
fit to the data from a 2 × 2 identification experiment. Perhaps
the best comparison would then be between the best-fitting
GRT-wIND model found using the procedures proposed here
and the best-fitting traditional GRT model found using the
procedures commonly used in the literature. In the traditional
model-based application of GRT (e.g., Ashby and Lee 1991;
Ashby et al. 2001; Thomas 2001), a number of different GRT
models are fit to the data of each participant in a study. The
different models are obtained by fixing different parameters to
specific values, representing assumptions about perceptual
independence, perceptual separability and decisional separa-
bility. For example, a model assuming perceptual indepen-
dence would have all correlation parameters fixed to zero.
Once the models are fit to data, model selection procedures are
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used to decide which one best describes the data for that
particular individual (for a review, see Ashby and Soto
2014). Thus, in traditional GRT applications the perceptual
representations are allowed to vary across individuals. GRT-
wIND imposes the constraint that such representations should
be the same for all people. If the assumption of universal
perception is not true, then we would expect that using differ-
ent models for different individuals would provide a better fit
to data than using the GRT-wIND model.

To compare GRT-wIND to the traditional model-based
approach, we fit the hierarchy of models shown in Fig. 5 to
the data from each participant, using maximum likelihood
estimation. The hierarchy shown in Fig. 5 was recommended
previously to perform model-based GRTanalyses (Ashby and
Soto 2014) and is similar to those found in previous studies
that have applied GRT to the 2 × 2 identification experiment
(e.g., Thomas 2001). Because there are only 12 degrees of
freedom in the data, some parameters were fixed for all
models: variances were set to one and decisional separability
was assumed for both dimensions. In Fig. 5, m represents the

number of free parameters in the model, PS stands for percep-
tual separability, PI for perceptual independence, DS for de-
cisional separability and 1_RHO describes a model with a
single correlation parameter for all distributions. To facilitate
finding the global maximum of the likelihood function, the
optimization was run 20 times for each model, each time with
different random starting values for the parameters, and the
solution with highest maximum likelihood was chosen as the
best solution.

Arrows in Fig. 5 connect models that are nested within
each other. The model selection procedure starts at the top of
the hierarchy and compares nested models through a likeli-
hood ratio test (see Appendix). If this test indicates significant
differences in fit, the lower model is selected and the process
continues. This process results in a small set of candidate non-
nested models, which are compared using the corrected
Akaike information criterion (AICC, see Appendix).

To compare how well GRT-wIND accounted for the data in
each individual confusion matrix compared to the best-fitting
traditional GRT model, we computed estimated response

Table 1 Average confusion matrix. Numbers in cells represent average response proportions and ranges (min/max)

Responses

Stimuli Neutral-ID1 Sad-ID1 Neutral-ID2 Sad-ID2

Neutral-ID1 0.888 (0.711/1.0) 0.051 (0.0/0.235) 0.04 (0.0/0.184) 0.021(0.0/0.103)

Sad-ID1 0.049 (0.0/0.196) 0.895 (0.707/0.992) 0.019 (0.0/0.081) 0.037 (0.0/0.131)

Neutral-ID2 0.047 (0.0/0.25) 0.018 (0.0/0.098) 0.879 (0.607/0.974) 0.056 (0.007/0.2)

Sad-ID2 0.051 (0.0/0.419) 0.092 (0.0/0.419) 0.131 (0.0/0.403) 0.727 (0.147/0.964)

Fig. 4 Scatterplot depicting observed response proportions against predicted response probabilities. The data from different participants is plotted with
different symbols. The diagonal line represents a model with perfect fit
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probabilities from both models and correlated them with the
observed response proportions of each participant. From these
correlations we computed the percentage of variance in the
individual data explained by each model. Figure 6 shows the
results of this analysis in the form of a scatterplot, with each
dot representing one participant. The position of the dot along
the abscissa represents the fit of the traditional GRT model,
whereas the position along the ordinate represents the GRT-
wIND fit. The diagonal represents equal fits for both models.
Both models account for a high percentage of variance, but
GRT-wIND provides a better fit than the best-fitting tradition-
al GRTmodel for 18 out of the 24 participants. This number of
successes is significantly higher than chance according to a
sign test, P < 0.05, Cohen's g = 0.25. The success of GRT-
wIND is especially impressive here, given that the number of

free parameters in GRT-wIND (i.e., 160) was less than the
sum of the number of parameters of the best-fitting traditional
GRT models (i.e., 166, see Table 2).

Fig. 5 Hierarchy of GRTmodels fitted to individual confusion data. The number of free parameters is symbolized bym. PI Perceptual independence, PS
perceptual separability, DS decisional separability, 1_RHO for a single correlation in all distributions

Fig. 6 Comparison of percentage of variance in the data from each
individual confusion matrix explained by GRT-wIND and the best indi-
vidual GRTmodel. Each circle represents results from a single participant

Table 2 Best-fitting general recognition theory (GRT)model (from those
shown in Fig. 5) for each participant in the experiment. PI Perceptual
independence, PS perceptual separability, DS decisional separability,
1_RHO single correlation in all distributions

Participant Best-fitting model Number of
free parameters

1 {PS(Identity), DS} 10

2 {PS, DS} 8

3 {1-RHO, PS(Identity), DS} 7

4 {1-RHO, PS(Identity), DS} 7

5 {PS, DS} 8

6 {1-RHO, PS, DS} 5

7 {1-RHO, PS, DS} 5

8 {1-RHO, PS(Emotion), DS} 7

9 {PS, DS} 8

10 {1-RHO, PS(Identity), DS} 7

11 {1-RHO, DS} 9

12 {1-RHO, PS, DS} 5

13 {PS, DS} 8

14 {1-RHO, PS(Emotion), DS} 7

15 {PS, DS} 8

16 {PI, PS(Identity), DS} 6

17 {1-RHO, PS, DS} 5

18 {PS, DS} 8

19 {1-RHO, PS(Identity), DS} 7

20 {1-RHO, PS, DS} 5

21 {1-RHO, PS(Identity), DS} 7

22 {1-RHO, PS, DS} 5

23 {1-RHO, PS(Identity), DS} 7

24 {1-RHO, PS(Emotion), DS} 7
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To complement the previous analysis, which focused on
model fits to each individual confusion matrix, we also com-
puted a global AICC measure for the best-fitting traditional
GRT model using the sum of the log-likelihoods of all 24
models (one for each confusion matrix), and the sum of their
number of free parameters. This allowed a direct comparison
of the overall fit of traditional GRT models against GRT-
wIND, taking into account both fit to the data and model
flexibility. The AICC for the traditional GRT models was
11,439, much higher than the AICC of 11,216 obtained for
the GRT-wIND model. The probability that GRT-wIND is a
better model than the traditional GRTmodels to describe these
data, computed using AIC weights (Burnham and Anderson
2004), was≈1.0. In sum, we conclude that GRT-wIND pro-
vided a better fit to the data than the best-fitting traditional
GRT models. Note here that although many traditional GRT
models were not tested, the best-fitting GRT models were
found using a model hierarchy (Fig. 5) and procedures that
are representative of applications found in the literature.

Table 2 lists the best-fitting GRT model for each partici-
pant, together with the corresponding number of free param-
eters of each model. On average, the GRT-wIND model has
6.67 free parameters for each participant (160 parameters / 24
participants). It can be seen from Table 2 that the best-fitting
GRT model for most participants (17) had a larger number of
degrees of freedom than this average. Note also how viola-
tions of perceptual independence are found consistently across
participants (except for Participant 16), but conclusions about
perceptual separability resulting from fitting individual
models are highly variable. Twelve participants show no
violations of perceptual separability for both dimensions,
eight participants show violations only for emotion, three
participants show violations only for identity, and one partic-
ipant shows violations for both dimensions. Thus, GRT-wIND
can fit the data from the present experiment better than indi-
vidual GRT models, using fewer free parameters and, as we
will see in the following section, avoiding the problem of
inconsistent conclusions about perceptual separability.

Tests of perceptual interactions

There are several approaches that allow testing hypotheses
about dimensional interactions within the framework of max-
imum likelihood estimation. One approach that has been used
in the past with GRT is to fit several versions of the model and
then select the one that offers the best account of the data
according to some criterion (such as likelihood ratio tests or
AIC, see Appendix). This is the approach that we used in the
previous section to find the best traditional GRT model for
each participant. Unfortunately, fitting GRT-wIND is compu-
tationally intensive (each model fit took 48–72 h in a single
processor of our computer cluster), as it involves solving an
optimization problem in a very high-dimensional space (160

parameters in the present study), so fitting as many models as
shown in Fig. 5 is not feasible.

However, one of the main reasons for using such a large
number of models in the past has been that the full GRTmodel
could not be fit, precluding researchers from testing a single
hypothesis about dimensional interaction without making ad-
ditional assumptions. Fitting many models is a way to select
the best set of assumptions among the models that can be fit.
In the framework of GRT-wIND, it is possible to fit the full
model and then test in isolation any assumptions of interest by
focusing only in the restrictions imposed by those assump-
tions. Thus, testing as many models as in Fig. 5 is not only
unfeasible within the framework of GRT-wIND, but also
unnecessary.

In sum, we can focus on a few restricted models, one for
each type of dimensional interaction that we want to test.
Again, one way to proceed is by fitting each model to the data
and performing model selection against the full GRT-wIND
model. However, this strategy would still take considerable
computing time and resources. More importantly, in our ex-
perience, the likelihood function of GRT-wIND has many
local maxima, and fitting multiple GRT-wIND models in-
creases the risk of getting stuck in these local maxima for at
least one of these models. This could lead to the unfair
comparison of a true maximum-likelihood model against a
local-maximum model. Local maxima should be avoided for
each model, by running the optimization algorithm with as
many starting parameter values as possible (here we used 60),
or through other means that also demand additional comput-
ing resources. To test for the most important forms of dimen-
sional interaction, this would mean fitting six different GRT-
wIND models many times.

We believe that a better use of limited computing resources
is trying to find the true maximum likelihood for the full
model and then directly testing estimated parameters. In the
Appendix, we describe methods to do exactly this using a
Wald test. This test can be computed after fitting only the full
model to data and is easy for most researchers to interpret, as it
relies on P-values and the familiar Chi-Square distribution.
Thus, this test has the additional advantage of being familiar to
most experimental psychologists, more so than performing
model selection through AIC and related methods.

Figure 7 shows the group perceptual distributions obtained
from the best-fitting GRT-wIND model. The face correspond-
ing to each distribution is shown next to its contour of equal
likelihood. As described above, the shape of the contours give
important information about dimensional interactions.

First note that three of the four perceptual distributions
seem to have a correlation parameter considerably different
from zero (i.e., the contours are tilted), indicating violations of
perceptual independence. The Wald test of perceptual inde-
pendence confirmed that these violations were significant,
χ2(4) = 49.68, P < 0.001.
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Next, note that violations of perceptual separability are also
apparent in Fig. 7. Specifically, there are clear violations of
perceptual separability of identity from emotion. Figure 7
shows what seems to be a mean-shift integrality: the means
of the distributions for both identities are shifted down for the
sad emotional expression compared to the neutral emotional
expression. Furthermore, the variance of the distribution of
identity 1 seems much higher for the sad expression than for
the neutral expression, and vice-versa for the distribution of
identity 2. These results were confirmed by the Wald test,
which indicated significant violations of perceptual separabil-
ity of identity from expression, χ2(4) = 803.63, P < .001.

On the other hand, violations of perceptual separability of
emotional expression from identity are less clear. The means
for each level of emotion are aligned across levels of identity,
but the variances seem to differ, especially the variances of the
distributions for the sad expression. The Wald test indicated
that deviations of perceptual separability of emotional expres-
sion from identity were not significant, χ2(4) = .67, P > 0.5.

Analysis of attentional and decisional factors

Figure 8 shows a scatterplot in which the coordinates of each
dot represent the estimates of the two attention parameters for
each participant. The figure also shows estimates of the prob-
ability distribution of each attention parameter (i.e., kernel
estimates). Note that if a participant was using exactly the
distributions depicted in Fig. 7, then κk should be equal to 2.0
and λk should be equal to 0.5. The level of global attention,
represented by the parameter κk, varies widely across partic-
ipants without a clear mode in the distribution. The level of
selective attention to emotional expression, represented by λk,

has a clear mode around 0.5 and is asymmetric around that
mode, with more subjects showing selective attention to emo-
tional expression (λk > 0.5) than subjects showing selective
attention to identity (λk < 0.5). The difference between the
distributions of κk and λk suggests that there was more vari-
ability in the general attention of participants to the task than
in the selective attention to one dimension versus the other. In
other words, most participants allocated roughly equal
amounts of attention to the two dimensions, but they differed
wildly in their overall discriminability. This difference could
be motivational, but it could also reflect differences in the
ability of participants to discriminate among different faces.

Finally, the Pearson correlation between the two at-
tentional parameters was not significant: r = 0.16, t(22) = 0.78,
P > 0.1). This suggests that the two parameter estimates
captured different aspects of a participant's performance in
the task.

An interesting question is whether the variability in indi-
vidual parameters is the outcome of a single distribution of
attentional and decisional strategies, or alternatively whether it
is the outcome of two or more clearly distinguishable sub-
groups of people using different strategies in the task. If the
second alternative were true, perhaps a better way to model
these data would be through a mixture model (Lee and
Wetzels 2010; Navarro et al. 2006), which would be more
parsimonious (i.e., fewer free parameters) and less prone to
overfitting than GRT-wIND. The presence of subgroups of
participants using a common attentional or decisional strategy
should be detectable from the parameter distribution: sub-
groups should result in multimodal distributions for these
parameters. The distributions observed in Fig. 8 appear
unimodal, which was confirmed by dip tests of unimodality
(Hartigan and Hartigan 1985) that were non-significant both
for the distribution of global attention, D = 0.05, P > 0.5, and
the distribution of selective attention, D = 0.04, P > 0.5.

To analyze individual decision strategies, the parameters
from the best-fitting discriminant functions (Eq. 4) were used
to compute, for each dimension, the intercept of the decision
bound and its degrees of clockwise rotation from vertical (on
the emotional expression dimension) or horizontal (on the
identity dimension). Note that these rotation values both equal
zero when decisional separability holds, with values higher or
lower than zero representing deviations from decisional sep-
arability. Similarly, the intercept represents the point where the
decision bound crosses the relevant dimension; that is, its
position along the relevant dimension.

Figure 9a shows a scatterplot in which the coordinates of
each dot represent the degrees of clockwise rotation from the
decisional separability bound for a single participant. Decision
bounds for emotional expression cluster around 10° of clock-
wise rotation from vertical, with all of them being greater than
zero. The results from Fig. 9a suggest that deviations from
decisional separability of expression from identity were

Fig. 7 Best-fitting configuration of perceptual distributions from the
experiment reported here. Ellipses are contours of equal likelihood. Face
images associated with each perceptual distribution are shown
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common and similar across participants. The results of Wald
tests (α = 0.05) on each individual slope indicated that the
observed violations of decisional separability were significant
in 22 of the 24 participants. A dip test of unimodality for the
distribution of slopes was not significant, D = 0.07, P > 0.5,
suggesting a single underlying distribution of decisional strat-
egies across the group of participants.

Decision bounds for identity are more heterogeneous, with
many of them clustering around zero degrees of rotation from
horizontal, but others having quite high positive values. The
results suggest deviations from decisional separability of iden-
tity from expression for some, but not all participants. The
results of Wald tests (α = 0.05) on individual slopes revealed
significant violations of decisional separability in only 4 of the
24 participants. The dip test for unimodality was not signifi-
cant, D = 0.08, P > 0.1.

The scatterplot in Fig. 9a shows that there was no relation
between the orientation of the two decision bounds across
participants, which was confirmed by a non-significant
Pearson correlation between these values, r = 0.15 , t(22) =
0.69, P > 0.1. This result suggests that the decisional strategies
employed by participants to classify each dimension were
independent from each other.

Figure 9b shows a scatterplot where the coordinates of each
dot represent intercepts of the decision bounds for a single
participant. These values were not significantly correlated
across participants, r = 0.25, t(22) = 1.19, P > 0.1. The
distributions observed in Fig. 9b appear unimodal, which
was confirmed by non-significant dip tests of unimodality

for the distribution for expression, D = 0.06, P > 0.5, and
the distribution for identity, D = 0.05, P > 0.5.

Although the analyses presented in this section did not find
evidence of subgroups of participants using different decision-
al or attentional strategies, it is still possible that subgroups
exist that differ in other aspects of processing, such as percep-
tion of identity and expression. The existence of such sub-
groups would violate one of the most important assumptions
behind GRT-wIND: that perceptual representations have a
similar structure across individuals. If subgroups exist, then
they should produce a multimodal distribution for measures of
model-fit, with one mode having a high fit value, representing
participants whose behavior is well-explained by the model,
and one or more modes having a lower fit value, representing
participants whose behavior is not well-explained by the
model. Figure 10 shows the percentage of the variance in each
participant's data explained by GRT-wIND, together with a
kernel density estimate for the distribution of measures of fit.
The distribution seems to be bimodal, with most participants
clustering between 0.99 and 1.00, but a small group of three
participants having a lower value of model-fit between 0.96
and 0.97. However, the distribution was not significantly
different from unimodal according to a dip test, D = 0.05,
P > 0.5.

A closer examination of the results for these three subjects
gave clues as to exactly what was different about them in
relation to the rest of the group. A look at Fig. 6
reveals that for at least one of these participants (par-
ticipant 12), whose point in the plot lies right next to

Fig. 8 Scatterplot showing the values of the estimated attentional parameters. Kernel density estimates for the distribution of values of each parameter
estimate are shown at the top and right of the scatterplot
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the diagonal, the individual GRT model did not provide
a substantially better fit than GRT-wIND. This suggests
that perhaps there was something about this participant's
data that violated the assumptions of GRT in general
and not GRT-wIND in particular.

The other two participants (participants 1 and 15) showed a
clearly higher fit value for the individual GRT model than for
GRT-wIND. For participant 1, this was likely the result of
over-fitting: the individual GRTmodel required 10 parameters
to provide such good fit to the data, which is considerably

Fig. 9 a, b Scatterplots summarizing the best-fitting GRT-wIND bounds.
a Degrees of clockwise rotation from the decisional separability bounds.
b Intercepts of each bound. Kernel density estimates for the distribution

of values of each parameter are shown at the top and right of the
corresponding scatterplot
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more than the average of 6.67 parameters required by GRT-
wIND.

Participants 1 and 12 showed rather poor performance in
the task (see supplementary material), which was reflected in
the two lowest values for κk in the sample (below 1.0, see
Fig. 8). One possibility is that some of the data from these
participants comes from an early learning stage that could not
be detected by our criteria for data exclusion. Such learning
performance cannot be captured by any GRT model, as these
are models of asymptotic performance.

The results of participant 15 are more difficult to explain
this way, which suggests that perhaps this participant did use
processes that could not be captured by GRT-wIND. This
participant showed a good fit by an individual GRT model
without an extremely high number of degrees of freedom (8).
None of the estimated parameters for this participant were
outliers, and there are patterns in his/her data that seem differ-
ent from most other participants, such as a high frequency of
responding “identity 2 neutral” when presented with “identity
1 neutral” (see supplementary material).

Evaluation of common assumptions in previous GRT models

As indicated previously, traditional GRTanalyses for the 2 × 2
identification design require making a number of assumptions
in order to evaluate dimensional interactions. An advantage of
GRT-wIND is that the full model and restricted models that
incorporate assumptions can be fit to the same data. As a
consequence, the GRT-wIND framework allows us to

evaluate, for a given dataset, how valid different assumptions
are and how they can affect conclusions about dimensional
interaction. Here, we perform such analysis for two of the
most common assumptions in previous applications of GRT:
equal variances for all distributions and decisional separability
in both dimensions (e.g., Ashby and Soto 2014; Thomas
2001; Fitousi and Wenger 2013).

To determine the validity of the assumption of equal vari-
ances, we performed a Wald test of the null hypothesis that all
variances in the model were equal to one, as the variances for
the first distribution were fixed to this value. The test did not
show significant violations of the assumption that the vari-
ances were equal to one, χ2(6) = 0.84, P < 0.05.

To evaluate the consequences of assuming equal variances
for tests of dimensional interactions, a restricted model with
all variances fixed to 1.0 was fitted to the data. The optimiza-
tion was performed 20 times, each time with a different set of
starting parameter values. Then the analysis of interactions
using Wald tests was performed on the obtained maximum
likelihood estimates. The AICC for this restricted model was
equal to 11,257, which is higher than the AICC of 11,216
found for the full model. Thus, the full model does seem to
capture structure in the data that cannot be captured by a
model assuming equal variances.

There are several explanations for the contradictory results
of the Wald test and the AIC comparison in this analysis. The
most obvious explanation is that the two methods were devel-
oped with different goals in mind: the Wald test was designed
to test null hypotheses about maximum likelihood estimates,

Fig. 10 Kernel density estimate for the distribution of percentage of variance explained by GRT-wIND
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whereas the AIC was designed to choose among a set of
models the one that yields the best balance between fit to the
data and model complexity. This, combined with the fact that
the AIC comparison does not take into account sampling
variability (see Preacher and Merkle 2012) means that there
is no reason to expect the two methods to yield the same
results in all applications. A more practical issue is that esti-
mation error could have affected the covariance values that
were input to the Wald test, or the maximum likelihood
estimates for the restricted model.

Regardless of whether or not the assumption about equal
variances was violated by our data, an important question is to
what extent making this assumption could affect the estimates
of other parameters in the model and the results of tests of
separability and independence.

Figure 11a displays the maximum likelihood solution for the
restricted model. It can be seen that violations of perceptual
separability that are apparent in the full model, such as the
mean-shift integrality described earlier, almost disappear in the
restricted model. Furthermore, the assumptions have an effect on
the analysis of interactions through the Wald test. Using the full
model, we found significant violations of perceptual separability
of identity from expression, but such violations were not found
using the restrictedmodel,χ2(4) = 0.78,P > 0.5. As with the full-
model analysis, there were no significant violations of perceptual
separability of expression from identity,χ2(4) = 3.79,P> 0.1, but
the violations of perceptual independence were significant,
χ2(4) = 51.02, P < 0.001.

The tests of violations of decisional separability of expres-
sion from identity led to the same result for the full and
restricted model in 18 participants, but 6 participants who
showed such violations with the full model did not show them
with the restricted model. The tests of violations of decisional
separability of identity from expression were consistent for the
full and restricted model in only 10 participants, with 13
participants who did not show violations with the full model
showing them with the restricted model and one participant
who did show violations with the full model not showing them
with the restricted model. In sum, the model assuming equal
variances led to less apparent violations of decisional separa-
bility of expression from identity, and to more apparent vio-
lations of decisional separability of identity from expression.

The results of Wald tests of decisional separability carried
out with the full model were presented earlier. They indicated
that individual bounds for emotional expression deviated sig-
nificantly from decisional separability in most participants,
whereas bounds for identity deviated significantly from deci-
sional separability in only a few participants (see Fig. 9a).
What is left is determining to what extent this assumption
could affect the results of tests of other forms of interaction.

We fitted a restricted GRT-wIND model that assumed
decisional separability in both dimensions to the data. As
before, the optimization was performed 20 times, each time
with a different set of starting parameter values. The AICC for
this restricted model was equal to 11,267, which is higher than
the AICC of 11,216 found for the full model. Thus, in this case
the AIC comparison confirms the results of the Wald tests,
showing reliable evidence that the full model captures struc-
ture in the data that cannot be captured by a model assuming
decisional separability.

Figure 11b displays the maximum likelihood solution for
the restricted model. In this case, violations of perceptual
separability of identity from emotion are still present in the

Fig. 11 a, b Best-fitting configuration of perceptual distributions for the
restricted GRT-wINDmodels fitted to the experimental data. a Restricted
model in which all variances are equal to one. b Restricted model that
assumes decisional separability for both dimensions. EllipsesContours of
equal likelihood. Face images associated with each perceptual distribu-
tion are shown
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restricted model and are significant according to theWald test,
χ2(4) = 171.77, P < 0.001. Furthermore, the restricted model
shows violations of separability of emotion from identity that
are less apparent in the full model. Such violations turned out
to be statistically significant, χ2(4) = 2,239.27, P < 0.001. As
with the full model, violations of perceptual independence
were also statistically significant, χ2(4) = 163.11, P < 0.001.

To summarize the most important results of this section,
both the assumption of equal variances and the assumption of
decisional separability led to changes in the conclusions
reached through GRT-wIND about perceptual separability
and decisional separability. Perceptual independence, on the
other hand, was consistently violated in all analyses. These
results suggest that common assumptions made in model-
based analyses using GRT can have an important influence
in the results of such analyses. AsGRT-wIND does not require
such assumptions, we recommend its use over traditional GRT
models to analyze the data from 2×2 identification designs.

Discussion

This article presents an extension to GRT that overcomes
many of the weaknesses that result from the traditional meth-
od via which GRT is applied to the analysis of dimensional
interactions. This new GRT-wIND model assumes that the
structure of perceptual representations for a set of stimuli is
shared among all people, whereas attention to specific stimu-
lus dimensions and decision strategies vary across individuals.
The model was applied successfully to the analysis of new
data from an identification experiment in which facial stimuli
varied in identity and emotional expression. The model was
able to describe these data better than traditional GRTmodels,
despite having fewer free parameters, while also allowing tests
of all types of independence defined within GRT. The results
from our analyses of dimensional interactions revealed that
identity is not perceptually separable from emotional expres-
sion, whereas deviations of perceptual separability of expres-
sion from identity were both small and not statistically signif-
icant. There were also clear violations of perceptual indepen-
dence. Violations of decisional separability for both dimen-
sions were common, but more participants showed statistical-
ly reliable violations in the case of expression than in the case
of identity.

All GRT analyses of dimensional interactions require as-
sumptions. For example, decisional separability is usually
assumed when there are not enough degrees of freedom to
fit a full GRT model. Assuming decisional separability is also
a way to deal with the non-identifiability in the 2 × 2 identi-
fication experiment (Silbert and Thomas 2013). Modeling
identification data with GRT-wIND offers the advantage that
no assumptions are required regarding perceptual separability,
decisional separability, or perceptual independence. Instead,

an assumption is made that all experimental participants share
the same perceptual distributions. This assumption is not only
plausible; without it, the analysis of perceptual independence
would be a trivial endeavor: if different individuals perceived
a set of stimuli in fundamentally different ways, then there
would be no answer (or rather, multiple answers) to the
question of whether or not two dimensions are processed
independently.

A second assumption of GRT-wIND is that there is
variability across people in their attention to stimulus di-
mensions and in their decisional strategies. This is funda-
mentally different from a recent hierarchical GRT model
that, like GRT-wIND, incorporates group parameters
(Silbert 2012). This hierarchical model proposes that indi-
vidual differences are due to random variability around
group parameters, not reflecting a psychologically mean-
ingful process. More research is necessary to understand
which model is correct in this regard. If individual atten-
tional and decisional strategies discovered through GRT-
wIND can predict individual differences in other parame-
ters, then it would be possible to make a case for its as-
sumptions. On the other hand, GRT-wIND offers a practical
advantage over the hierarchical GRT model: the latter suf-
fers from a number of the shortcomings with traditional
GRT models identified in the introduction, including being
unable to dissociate all types of dimensional interaction
identified in the theory (Ashby and Townsend 1986).

The analysis of interactions between identity and expres-
sion in face perception using GRT-wIND suggested that ex-
pression is perceptually separable from identity, but identity is
not perceptually separable from expression. This result is
particularly important, because perceptual separability is the
concept that seems more similar to the idea of “independence”
evaluated by previous studies. Most of those previous studies
have found the opposite result, with identity having a large
influence in processing of expression and expression having a
small or non-existent influence in processing of identity (e.g.,
Baudouin et al. 2002; Ganel and Goshen-Gottstein 2004;
Schweinberger et al. 1999; Schweinberger and Soukup
1998; Soto and Wasserman 2011). An important difference
between previous studies and the present experiment is that
using GRT-wIND allowed us to dissociate perceptual and
decisional factors in dimensional interaction. One explanation
for prior experimental results is that they might reflect the
outcome of decisional rather than perceptual processes. In the
present study, violations of decisional separability were com-
mon for both face dimensions, and more consistent across
participants in the case of expression. Such consistent viola-
tions of decisional separability might be what most previous
studies captured. Furthermore, decision strategies can vary
depending on instructions and experimental procedures (e.g.,
Ashby et al. 2001), which could explain the variability in the
results of previous research.
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On the other hand, an important limitation of the present
experiment is that it included only two identities and a single
emotional expression. Perhaps a different pattern of results
will arise with other expressions or with different identities;
more research will be necessary to reach a strong conclusion
about the interaction between identity and emotion. Such
research should include comparisons between familiar and
non-familiar identities (e.g. Ganel and Goshen-Gottstein
2004), manipulation of the discriminability of each dimension
(e.g., Schweinberger and Soukup 1998) and testing the gen-
erality of the results by using several different identities and
emotional expressions. However, because the present experi-
ment established that violations of decisional separability can
be found easily in a face identification task, all future research
should aim to dissociate decisional factors from the analysis of
perceptual separability and independence.

Another limitation of the present study is that the applica-
tion of GRT-wIND to an identification design only allows an
analysis of response frequencies. This is different from most
previous studies using the Garner interference task, which
focus on the analysis of response times. Analysis of response
times is possible within the framework of GRT-wIND, but it
would require both additional assumptions and additional
experiments. Perhaps the simplest way to incorporate re-
sponse times into any GRT model is to assume that response
time decreases with the distance between the perceptual
effect of a stimulus and the decision bound (see Ashby
and Maddox 1994). Unfortunately, this results in a well-
defined model only for experiments with a single deci-
sion bound per participant, where each response time
corresponds to a single distance-to-bound. For the iden-
tification experiment reported here, one decision bound
is required for each dimension, so a single response
time would be some function of two distances-to-
bound. In order to model response times using GRT,
one strategy is to run both an identification and a
speeded-categorization experiment using the same stim-
uli and participants (Maddox and Ashby 1996). The
data from the identification experiment is used to find
parameters of the perceptual distributions for a set of
stimuli, as we have done here. These parameters are
then used to build a model of response times for the
classification experiment. An advantage of GRT-wIND
is that, because it assumes common perceptual distribu-
tions across participants, it allows these two experiments
to be performed on two separate groups, making it
much easier to perform such two-stage studies. We are
currently working on implementing this extension of
GRT-wIND, which is beyond the scope of the present
work.

The only previous study addressing dimensional in-
teractions between identity and expression using GRT
(Fitousi and Wenger 2013) found that, for unfamiliar

faces such as those studied here, perceptual separability
of emotional expression was violated whereas perceptual
separability of identity was not violated. This is the
opposite to what we found here. One possible explana-
tion for these disparate results is that the limited degrees
of freedom in the data forced Fitousi and Wenger to
make some simplifying assumptions that could have
biased their results. These authors assumed equal vari-
ances in all the GRT models that they tested. We found
that this assumption was invalid for our data and that it
affected the outcome of tests of perceptual separability.
Furthermore, the most general model that Fitousi and
Wenger could have tested, given the small number of
degrees of freedom in their data, must have included
additional simplifying assumptions. Unfortunately, we
do not know what those assumptions are, because the
authors do not report what models they included in their
analysis.

More generally, it seems important at this point to give
some guidance as to how researchers should interpret dispa-
rate conclusions about separability and independence reached
through traditional GRT models and GRT-wIND. A GRT
model for the 2 × 2 identification design requires a number
of parameters to explain the data from a single participant.
Traditional GRT models do not allow estimation of all these
parameters, so many of them must be fixed by the researcher.
On the other hand, GRT-wIND allows estimation of all the
parameters necessary to explain the data from a single partic-
ipant. When the same parameters that are held fixed in GRT
models are allowed to vary in GRT-wIND, this affects the
values estimated for the parameters shared by both models.
For example, given a specific data set from a single partici-
pant, if the slope parameter for the bound in dimension B is
fixed to 1 in a GRT model, but the estimated value in GRT-
wIND is 2, then the values of other parameters (in particular,
the means and variances along dimension B) will differ for the
two models, to accommodate the fact that different slopes
must explain the same data. This will happen to varying
degrees, regardless of whether or not our estimate of the slope
in GRT-wIND turns out to be significantly different from the
value of 1 assumed in the GRT model.

Fixed parameters in traditional GRT models are equivalent
to assumptions about separability and independence. GRT-
wIND is free of such assumptions, at the cost of assuming
that different people perceive a set stimuli in a fundamentally
similar way. In practice, when a researcher finds that GRTand
GRT-wIND lead to different conclusions about a particular
data set, if the assumptions of GRT-wIND can be justified,
then the conclusions reached through GRT-wIND should be
preferred. As we have shown here, analysis of the distribution
of parameters and measures of fit can help to determine
whether the main assumptions of GRT-wIND are violated in
a given data set.
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The experiment reported here used extremely short
presentation times (about 16.67 ms), which might raise
the concern that participants did not base their
responding on high-level facial features, but on low-
level differences among the images such as large areas
with different contrast. There are at least three reasons
to believe that this was not the case in the present
study. First, images were standardized in several ways
to avoid use of low-level image properties. The original
images were histogram-equalized and we eliminated
non-facial features by showing faces through an oval
window. Second, previous research suggests that faces
can be discriminated with presentation times as short as
100 ms at the same level of performance as with pre-
sentation times of 1,000 ms, and they can still be
discriminated to a good level well below 100 ms (e.g.,
Lehky 2000). Furthermore, such results were obtained
using a more difficult task than the one used here,
involving stimulus masking (which disrupts visual pro-
cessing after presentation of the mask), smaller differ-
ences between faces (achieved through morphing) and
no feedback. Third, our own personal experience with
the task confirmed that identification is easily achieved
on the basis of identity and emotion after a short adap-
tation time.

In recent years, researchers have showed increasing
interest in using GRT to analyze dimensional interactions
in face perception (e.g., Cornes et al. 2011; Fitousi and
Wenger 2013; Mestry et al. 2012; Richler et al. 2008).
Such applications are promising, because GRT offers a
number of advantages over other approaches, including a
dissociation between perceptual and decisional processes
and the possibility of defining vague concepts—such as
configural and holistic face processing—within a formal
framework.

These advantages of GRT might prove to be extremely
useful to answer important open questions about the inter-
action among face dimensions. For example, the structural
reference hypothesis (Ganel and Goshen-Gottstein 2004;
Ganel et al. 2005) proposes that emotional expression is
coded as dynamic variations from the invariant structure
of faces. This invariant structure influences the way in
which each individual expresses emotion. Because famil-
iarity with a face should lead to better knowledge of the
structure of a face, the structural reference hypothesis
predicts that familiarity should lead to a larger interference
of identity on expression processing, a prediction that has
been confirmed using a Garner filtering task (Ganel and
Goshen-Gottstein 2004). However, familiarity with a face
can also lead to changes in decisional bias, particularly if
a face has been experienced more times showing one
particular expression (e.g., Jim Carrey is typically happy,
whereas Tommy Lee Jones is typically serious). Thus, the

results from a filtering task are difficult to interpret unless
it can be shown that the effect of familiarity is on per-
ceptual representations instead of decisional biases.

The increased interest in the application of GRT to the
study of face perception and other areas of perceptual science
has been undermined recently by papers reporting shortcom-
ings with the GRT framework (Mack et al. 2011; Silbert and
Thomas 2013). An important contribution of the present work
is the description of an extended GRT framework, GRT-
wIND, which overcomes most shortcomings in traditional
applications of GRT. This new framework can be applied
easily to analyze data from the most commonly used experi-
mental designs without sacrificing the ability to test any forms
of independence defined by GRT, which makes it an impor-
tant addition to the toolbox available to researchers in percep-
tual science.
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Appendix

Here we prove that the problem of non-identifiability of
decisional separability described by Silbert and Thomas
(2013) occurs in GRT-wIND only in the special case in which
the decision bounds of all participants for each dimension are
parallel to each other. We also describe procedures to: (1)
estimate the parameters of a GRT-wIND model from identifi-
cation data using maximum likelihood estimation, (2) run
statistical tests for perceptual independence, perceptual sepa-
rability and decisional separability, and (3) estimate parame-
ters and test different types of independence as in previous
applications of GRT.

Identifiability of decisional separability in the 2 × 2
GRT-wIND model

Silbert and Thomas (2013) showed analytically that a failure
of decisional separability is non-identifiable in the Gaussian
GRTmodel for a 2 × 2 identification experiment. That is, if the
data from an experiment can be fit by a GRT model in which
decisional separability fails, then it is always possible to find a
different GRT model in which decisional separability holds
and that predicts the exact same data pattern. We call this
result the Silbert-Thomas non-identifiability, or STn for short.
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We start by summarizing the proof offered by Silbert and
Thomas (2013). Their theorem states that “Any perceptually
separable but decisionally nonseparable configuration can be
transformed to a configuration that is perceptually
nonseparable, decisionally separable, and equivalent with
respect to predicted response probabilities” (p. 17). Thus,
they focus on the case in which the original configuration
exhibits perceptual separability but violations of decisional
separability. However, the more general result is that decision-
al separability is nonidentifiable in this model. As the authors
indicate, “Any arbitrary (and, in general, not perceptually
separable) linear bound model without decisional separabil-
ity can be rotated and sheared to produce a model with
decisional separability […], failure of decisional separability
is never identifiable in this model” (pp. 4–5).

The proof for this theorem starts with a configuration without
decisional separability and that has been translated so that the

origin of the xy-plane coincides with the intersection of the two
decision bounds hA and hB. The angle between hB and the x-axis
is represented by ϕ and the angle between the bounds hA and hB
is represented byω. Decisional separability holdswhenϕ = 0 and
ω = π/2. Rotation of the original configuration by ϕ degrees
brings hB to be parallel to the x-axis (and orthogonal to the y-
axis), achieving decisional separability of component B from A.
The horizontal shear transformation has the property of changing
the angle between all lines in the plane except those parallel to the
x-axis. Thus, for any value ofω, a horizontal shear transformation
can be found that brings this angle to π/2 while keeping hB
parallel to the x-axis, thus achieving decisional separability
of component A from B while also keeping decisional
separability of component B from A.

The rotation and shear transformations can be represented
by the transformation matrices L1 and L2, respectively, which
combine to produce:

L ¼ L2L1 ¼ 1 −
1

tanω
0 1

" #
cosf −sinf
sinf cosf

! "
¼ cosf−

sinf
tanω

−sinf−
cosf
tanω

sinf cosf

" #

ðA1Þ

This is an area-preserving affine transformation. The
change-of-variables theorems for densities guarantees that
probabilities will be preserved under such transformation
(Billingsley 2012). This means that the predicted probabilities
of correct responses in the original configuration and the
decisionally-separable configuration are the same, as the
values of the integrals involved do not change. The means
and covariance matrices in the decisionally-separable config-
uration can be computed from the original means and covari-
ance matrices by using the formulas:

μ!T
¼ Lμ! ðA2Þ

ΣT ¼ LΣLT ðA3Þ

In the remainder of this section, we show the conditions
under which decisional separability is non-identifiable in GRT
models with more than one bound per dimension. GRT-wIND
and n x m GRT models with n > 2 and m > 2 are special cases
of this general class. We start by identifying the conditions
under which STn holds for a model with two bounds per
dimension. It is then straightforward to see that the same
conditions apply for any larger number of bounds per
dimension.

Theorem

In a Gaussian GRTmodel with two dimensions and two linear
bounds per dimension, where the ith bound for dimension A is

represented as hAi and the jth bound for dimension B as hBj,
the non-identifiability of decisional separability identified by
Silbert and Thomas (2013) is true if and only if hA1║ hA2 and
hB1 ║ hB2.

Proof

We first prove that if hA1║ hA2 and hB1║ hB2, then STn holds.
As with the proof of STn, we start with a configuration
without decisional separability that has been translated so that
the origin of the xy-plane coincides with the intersection of
hA1 and hB1.We represent the angle between hBj and the x-axis
as ϕj and the angle between of hAi and hBj as ωij. Because hB1
and hB2 are parallel to each other, but not parallel to the x-axis,
they intersect the latter at congruent angles; that is, ϕ1 = ϕ2 .
Thus, rotation of the original configuration by ϕ1 degrees
brings both hB1 and hB2 to be parallel to the x-axis and
orthogonal to the y-axis, achieving decisional separability of
component B from A. After rotation, it is still true that hA1 ║
hA2 and hB1 ║ hB2, because rotation preserves parallelism.
This means that ωij = ω for all i and j. Thus, a single shear
tranformation can bring this angle to π/2, achieving decisional
separability of component A from B while also keeping
decisional separability of component B from A.

To complete the proof, we must show that if STn holds,
then hA1║ hA2 and hB1║ hB2. For STn to hold, a decisionally-
separable configuration must exist that can be found by ap-
plying an affine transformation L to an original configuration
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without decisional separability. By definition, in this
decisionally-separable configuration hA1 ⊥ x, hA2 ⊥ x, hB1 ⊥
y and hB2 ⊥ y. Because two lines that are both perpendicular to
a third line are parallel to each other, with all lines in the same
plane, hA1 ║ hA2 and hB1 ║ hB2 in the decisionally separable
configuration. To go from the decisionally separable configu-
ration to the original configuration, we must apply the trans-
formation L−1. This inverse transformation exists because
both shear and rotation are invertible transformations. The
inverse of an affine transformation is itself an affine transfor-
mation that conserves parallelism, so application of L−1 to the
decisionally-separable transformation conserves the property
that hA1║ hA2 and hB1║ hB2. Thus, if STn holds, then bounds
must be parallel in the decisionally separable configuration as
well as in the original configuration.

This completes the proof for the case in which there are two
linear bounds per dimension. A corollary is that for models
with more than two bounds per dimension, STn holds if and
only if each bound in one dimension is parallel to each of the
other bounds in that specific dimension.

Here we have exclusively dealt with part (i) of the theorem
proposed by Silbert and Thomas (2013). Part (ii) of this
theorem proposes that a configuration with mean shift inte-
grality and decisional separability is unidentifiable from a
configuration with perceptual separability and without deci-
sional separability. This theorem also deals with the non-
identifiability of decisional separability, so as before it only
holds for models with more than one bound per dimension if
those bounds are parallel. Furthermore, an additional condi-
tion for this theorem to hold is that all covariance matrices in
the model must be identical (Thomas and Silbert 2014). This
in general is not the case in GRT-wIND or in traditional GRT
models for designs larger than 2 × 2, which allow for estima-
tion of different variances and covariances for each perceptual
distribution.

In conclusion, STn is not generally true in GRT-
wIND or any other model with more than one bound
per dimension. The non-identifiability of decisional sep-
arability arises in such models only under very specific
circumstances.

Maximum likelihood estimation for GRT-wIND

The data from each participant in an identification experiment
are summarized in a confusion matrix, with rows correspond-
ing to each stimulus in the experiment, columns correspond-
ing to each response, and response frequencies reported in
each cell of the matrix. Let S1, S2,…, Sn denote the n stimuli in
an identification experiment and let R1, R2,…, Rn denote the n
responses. Let rij denote the frequency with which the
participant responded Rj on trials when stimulus Si was
presented. Finally, there are N participants in the exper-
iment, indexed by k = 1, 2,…,N. Given a set of

parameter values for the model, the likelihood of this
confusion data is computed in two steps.

In the first step, the predicted confusion matrix of
each participant is computed using standard methods.
For example, the predicted probability that a participant
responds Rj on trials when stimulus Si was presented,
denoted by P(Rj|Si), is computed by integrating the
volume of the Si perceptual distribution in response
region Rj. A numerical approximation to this multiple
integral can be computed efficiently using Cholesky
factorization (Ennis and Ashby 2003; for a tutorial overview,
see Ashby and Soto 2014).

The second step is to compute the log of the likelihood
function for participant k:

logLk ¼
X

i¼1

n X

j

n

rijlogP Rj
$$Si

% &
ðA4Þ

These log-likelihoods are then summed across all partici-
pants:

logL ¼
X

k¼1

N

logLk ðA5Þ

The maximum likelihood estimates of the parameters in a
GRT-wIND model are those that maximize the expression in
Equation A5.

Statistical tests of independence with GRT-wIND

The large number of parameters in a GRT-wINDmodel makes
the computational cost of using likelihood ratio tests and
model selection procedures prohibitive. Thus, we recommend
a deviation from the custom of computing such tests in GRT
analyses. The strategy used here consists of fitting the full
GRT-wIND model and testing maximum-likelihood parame-
ter estimates against expected values from null hypotheses
using a Wald test (Wald 1943).

Let bθ be a column vector containing the maximum likeli-
hood parameter estimates. The Wald test can be used to test
any null hypothesis that can be expressed in the form of linear

restrictions on bθ:

H0 : R bθ −
!
q ¼ 0

H1 : R bθ − q ≠ 0

where R is a matrix with number of columns equal to the
number of parameters and number of rows equal to the num-
ber of restrictions being tested, and q is a column vector with
number of rows equal to the number of restrictions being
tested. For example, if we wanted to test the hypothesis that
bθ1 ¼ 0 , then R would have a single row (we are testing a
single restriction) with a +1 in the first cell of that row and
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zeros in all other cells, while q would have a single cell with a
zero in it. If we want to additionally test the hypothesis that
bθ2−bθ3 ¼ 10 , then we would add a second row to R with a +1
in the second column (corresponding to þbθ2 ) and –1 in the
third column (corresponding to −bθ3 ), while q would now have
a second cell with the value 10 in it.

Null hypotheses are tested using the Wald statistic:

W ¼ Rbθ−q
h iT

RΣbθ
−RT

! "−1
Rbθ−q
h i

ðA6Þ

where []T represents matrix transpose. The statistic W has a
chi-squared distribution with degrees of freedom equal to the
number of restrictions being tested (the length of q). Comput-
ing W requires the covariance matrix of the maximum likeli-
hood estimates, which can be estimated using the Hessian of
the log-likelihood function at the solution:

Σbθ
¼ H bθ

' (−1
ðA7Þ

Usually the Hessian in Eq. A4 can be obtained from the
same optimization software that is used to obtain the param-
eter estimates that maximize the log-likelihood, but better
estimates are obtained from numerical differentiation soft-
ware. In this study, we used the DERIVEST suite (D’Errico
2006) to obtain estimates of the Hessian.

For the 2×2 identification design used here, the restrictions
imposed on the model by perceptual separability of dimension
A from dimension B are the following:

μA1B21 ¼ 0
σA1B21 ¼ 1

μA2B11−μA2B21 ¼ 0
σA2B11−σA2B11 ¼ 0

The restrictions imposed in the model by perceptual
separability of dimension B from dimension A are the
following:

μA2B12 ¼ 0
σA2B12 ¼ 1

μA1B22−μA2B22 ¼ 0
σA1B22−σA2B22s ¼ 0

The restrictions imposed in the model by perceptual inde-
pendence in each of the perceptual distributions are the fol-
lowing:

ρA1B1
¼ 0

ρA1B2
¼ 0

ρA2B1
¼ 0

ρA2B2
¼ 0

The Wald test allows tests of decisional separability for the
whole group or for each participant individually. Here, we

focus on the latter kind of test. Testing whether decisional
separability of dimension A from dimension B holds in par-
ticipant k involves a single restriction:

bAk2 ¼ 0

Testing whether decisional separability of dimension B
from dimension A holds in participant k involves the follow-
ing restriction:

bAk1 ¼ 0

Model fit and selection in the traditional GRT approach

To fit any GRTmodel to data (e.g., the models in the hierarchy
shown in Fig. 5), the confusion matrix from a single partici-
pant is used to find the values of the free parameters that
maximize Eq. A5.

A popular method to test assumptions about indepen-
dence and separability is to fit a restricted and an
unrestricted version of the model to data. The restricted
model contains a number of parameters that are set to
values reflecting the assumption under test. For exam-
ple, testing perceptual independence would require set-
ting all ρ parameters to zero. The same parameters
would be free to vary in the unrestricted model. Once
both models are fit to data, the likelihood of the data at the
solutions (LU and LR for the unrestricted and unrestricted
versions, respectively) can be used to run a likelihood ratio
test, by computing the following statistic:

Λ ¼ −2 logLR−logLUð Þ; ðA8Þ

which follows a Chi-squared distribution with degrees of
freedom equal to the difference in number of free parameters
between the two models.

The likelihood ratio test can only be applied to select
between two nested models. To select between two non-
nested models, it is possible to use the Akaike information
criterion (AIC, Akaike 1974) for model comparison. Here we
use a version of AIC corrected for a bias problem present
when the number of data points is small compared to the
number of free parameters (see Burnham and Anderson
2004):

AICC ¼ –2logLþ 2mþ 2m mþ 1ð Þ= n2–m–1
% &

; ðA7Þ

where m is the number of free parameters in the model and n2

is the number of cells in the confusion matrix. The first two
terms in Eq. A7 correspond to the traditional definition of AIC
and the last term corresponds to the correction factor. A
smaller value of AIC represents a better fit of the model to
the data.
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In the present study, as in previous model-based applica-
tions of GRT (e.g., Ashby and Lee 1991; Ashby et al. 2001;
Fitousi and Wenger 2013 Thomas, 2001), a hierarchy of
models was fit to the data from each participant (see Fig. 5).
The procedure starts at the top of the hierarchy and compares
nested models through likelihood ratio tests until the test
results in a non-significant increase in fit. If more than one
candidate model survives this process, the model with the
smallest AICC is selected.
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