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Recent work has shown that multimodal association areas—including frontal, temporal, and parietal cortex—are
focal points of functional network reconfiguration during human learning and performance of cognitive tasks. On
the other hand, neurocomputational theories of category learning suggest that the basal ganglia and related sub-
cortical structures are focal points of functional network reconfiguration during early learning of some categori-
zation tasks but become less so with the development of automatic categorization performance. Using a
combination of network science and multilevel regression, we explore how changes in the connectivity of
small brain regions can predict behavioral changes during training in a visual categorization task. We find that
initial category learning, as indexed by changes in accuracy, is predicted by increasingly efficient integrative pro-
cessing in subcortical areas, with higher functional specialization, more efficient integration across modules, but
a lower cost in terms of redundancy of information processing. The development of automaticity, as indexed by
changes in the speed of correct responses, was predicted by lower clustering (particularly in subcortical areas),
higher strength (highest in cortical areas), and higher betweenness centrality. By combining
neurocomputational theories and network scientific methods, these results synthesize the dissociative roles of
multimodal association areas and subcortical structures in the development of automaticity during category
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Introduction

Network science provides a set of robust tools that are increasingly
used to describe and understand neural systems (Bullmore and
Sporns, 2009; Sporns, 2014). Neurons or brain regions are represented
as network nodes, and structural or functional connections between re-
gions are represented as network edges. Recent studies demonstrate
that the topology of functional brain networks can reconfigure quickly
as the result of learning (Bassett et al., 2013b; Bassett et al., 2011,
Bassett et al., 2015) and task engagement (Bassett et al., 2006; Ekman
et al., 2012; Fornito et al.,, 2012; Kitzbichler et al., 2011). In several
cases, this reconfiguration leads to more integrated and less segregated
processing (Cole et al., 2014; Ekman et al,, 2012; Kitzbichler et al., 2011)
and involves strong reconfiguration in some nodes, while global net-
work properties can remain relatively stable (Bassett et al., 2006;
Moussa et al,, 2011; Rzucidlo et al., 2013; Braun et al., 2015). In particu-
lar, nodes in multimodal association areas—within frontal, temporal,
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and parietal cortex—flexibly change their community affiliation during
learning (Bassett et al., 2013b; Bassett et al., 2011, Bassett et al., 2015),
their connectivity pattern during rule application and preparatory at-
tention (Cole et al.,, 2013; Ekman et al., 2012), and the cost-efficiency
of their connectivity during accurate performance of working memory
tasks (Bassett et al., 2009; Braun et al., 2015).

Despite these results, it is unlikely that connectivity changes in cor-
tical association areas underlie functional network reconfigurations
across all tasks. For example, connectivity changes and integrative pro-
cessing in the basal ganglia are likely to be of utmost importance during
initial learning of some categorization tasks (Ashby and Ennis, 2006). A
body of behavioral and neurobiological evidence suggests that the brain
areas associated with categorization are organized in relatively separate
category learning systems and that different categorization tasks
engage the systems differently (Ashby and Maddox, 2005; Nomura
and Reber, 2008; Poldrack and Foerde, 2008; for a formalization of this
multiple-systems hypothesis in a neurocomputational model, COVIS,
see: Ashby et al., 1998; Ashby, Paul, & Maddox, 2011). Rule-based
tasks, in which the optimal strategy is easy to verbalize and can be
learned through a logical reasoning process, recruit a declarative-
learning system that is based on explicit reasoning and hypothesis
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testing. Learning in this system is implemented in a network of areas in-
cluding prefrontal cortex, basal ganglia, and hippocampus. Many of the
previous studies reporting network reconfiguration during learning and
task performance are similar to rule-based tasks in that they seem to
rely heavily on executive function (e.g., Bassett et al., 2011; Braun
et al., 2015; Cole et al., 2013; Ekman et al., 2012). This might explain
why connectivity changes in cortical association areas accompanied
network reconfigurations in such studies.

On the other hand, learning of information-integration categoriza-
tion tasks does not require executive function. Information-integration
tasks require the integration of information from two or more stimulus
components at a pre-decisional stage, and they recruit a procedural-
learning system implemented in the circuitry of the basal ganglia (cau-
date, putamen, pallidum, and related thalamic nuclei). Thus, it is likely
that changes in connectivity in the basal ganglia and related subcortical
structures underlie network reconfiguration during learning of
information-integration categorization tasks.

Even so, Ashby et al. (2007) proposed that in contrast to early learn-
ing, automatic categorization is mediated entirely within cortex and
that the development of automaticity is associated with a gradual trans-
fer of control from the basal ganglia to cortical-cortical projections from
the relevant sensory areas directly to the premotor areas that initiate
the behavior (see also, Ashby et al., 2010; Helie et al., 2015). Some neu-
roimaging results support this view of how automaticity develops
(DeGutis and D’Esposito, 2009; Waldschmidt and Ashby, 2011).

During the acquisition of virtually all skills, improvements in
accuracy asymptote long before improvements in response time
(e.g., Crossman, 1959; Helie et al., 2010). Numerical simulation studies
show that the relatively fast changes in accuracy that occur during
early skill acquisition are likely to reflect learning-related changes in
the basal ganglia and related subcortical areas, whereas the slower
changes in the speed of correct responding likely reflect the switch to
cortically controlled automatic performance (Ashby et al., 2007). This
dissociation in behavioral measures can be used to study whether and
how changes in functional networks are related to different stages of
category learning. We can expect changes in the connectivity of subcor-
tical areas—instead of cortical association areas—to predict initial
category learning best. Furthermore, this central role of the basal ganglia
should be more apparent in the prediction of accuracy than in the pre-
diction of response times.

Here we explore these predictions using a combination of network
science and multilevel regression (Gelman and Hill, 2007). We study
how changes in the connectivity of brain regions can predict behavioral
changes during extensive training in a task known to foster procedural
category learning (Ashby et al., 2003). Our analysis approach is illustrat-
ed in Fig. 1. The red broken-line boxes represent points where data en-
tered the analysis. Structural images were used to define 742 small
clusters of voxels that were used as units for subsequent analyses
(i.e., network nodes). Only nodes localized in a number of regions of in-
terest (ROI) were included in the analysis. These ROIs were chosen
based on neurocomputational theory and previous research on the
neural correlates of category learning (see Soto et al., 2013). Thus, the
analyses focus specifically on the brain network thought to be involved
in category learning.

Functional scans from each block of training were preprocessed and
the average BOLD signal was computed from each cluster of voxels de-
fining an individual node. Functional connectivity matrices were built
by computing the wavelet correlation between average BOLD signals
and then thresholding these correlations. The functional connectivity
matrices were then used to compute a number of graph measures (for
a summary description of each measure, see Table 1) for each node of
the network, providing a characterization of the node's topological
role in the functional network at a particular point during categorization
training (that is, during each block).

Changes in network measures across training were used in regres-
sion analyses to predict corresponding changes in accuracy and

response times. Based in our hypotheses, we expected that measures
computed from subcortical nodes, instead of nodes located in cortical
association areas, would predict initial category learning best, and that
the importance of subcortical areas would be more apparent in the pre-
diction of accuracy than in the prediction of response times.

Finally, regression coefficients were analyzed further to explore the
specific relation between each predictor measure and behavior.

Materials and methods
Experimental procedures

Participants

Ten healthy undergraduate students from the University of Califor-
nia, Santa Barbara (6 males, 4 females), voluntarily participated in this
study in exchange for course credit or a monetary compensation. This
is a small but sufficient sample size (Snijders and Bosker, 2012) that
has been shown to provide unbiased estimates of regression coefficients
in multilevel regression (Bell et al., 2014; Maas and Hox, 2005; see dis-
cussion in the supplementary material). All participants gave their writ-
ten informed consent to participate in the study. The institutional
review board of the University of California, Santa Barbara, approved
all procedures in the study.

Standard univariate and multivariate analyses of the imaging data
acquired on this sample have been previously reported (Soto et al.,
2013; Waldschmidt and Ashby, 2011). We excluded one person from
the full sample of eleven participants due to incomplete data.

Behavioral task

The stimuli were circular sine-wave gratings of constant contrast
and size (see example in Fig. 3A) that varied in orientation from 20° to
110° and in frequency from 0.25 to 3.58 cycles per stimulus width.
Fig. 3B shows the category structure used to train participants; each
dot in the figure represents a different stimulus and the dotted line rep-
resents the boundary separating the two categories. Previous research
suggests that this task is mastered through procedural learning
(e.g., Ashby et al.,, 2003; Maddox et al., 2004). During each trial, partici-
pants were presented with one of these stimuli and had to identify the
category to which the stimulus belonged by pressing a button; this was
followed by feedback indicating the accuracy of the response. Stimuli
were presented and responses were recorded using MATLAB augment-
ed with the Psychophysics Toolbox (Brainard, 1997), running on a Mac-
intosh computer. For a more detailed description of the stimuli and
apparatus, see Helie et al. (2010).

The experiment consisted of 23 sessions of training in the categori-
zation task, four of which were conducted in the MRI scanner. The train-
ing sessions were carried out over 23 consecutive workdays, one session
per day. The scanning sessions were sessions 2, 4, 10, and 20, and each
consisted of 6 blocks of 80 stimuli, for a total of 480 stimuli per session.
Participants selected their responses through response boxes, where
the button box in their left hand was correct for the category at the
top-left of the bound in Fig. 2B, and the button box in their right hand
was correct for the category at the bottom-right of the bound in
Fig. 2B. Feedback was displayed for 2 s and consisted of a green check
mark for correct responses or a red “X” mark for incorrect responses. If
it took more than 2 s for the participant to respond, a black dot was
displayed indicating that the response was too slow. Half of the trials in-
cluded the presentation of a cross-hair before the stimulus presentation.

The 19 sessions of categorization training outside the scanner were
similar to the scanner session but carried out on a Macintosh computer.
For a more detailed description of these sessions, see Helie et al. (2010).

Neuroimaging

Arapid event-related fMRI procedure was used. Images were obtain-
ed using a 3T Siemens TIM Trio MRI scanner at the University of Califor-
nia, Santa Barbara Brain Imaging Center. The scanner was equipped
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Fig. 1. A graphical summary of the data analysis procedures used in this study. Broken-line boxes represent points in the flowchart were data are entered into the analysis.

with an 8-channel phased array head coil. Cushions were placed around
the head to minimize head motion. A localizer, a GRE field mapping
(3 mm thick; FOV: 192 mm; voxel: 3 x 3 x 3 mm; FA = 60°), and a
T1-flash (TR = 15 ms; TE = 4.2 ms; FA = 20°; 192 sagittal slices 3-D ac-
quisition; 0.89 mm thick; FOV: 220 mm; voxel: 0.9 x 0.9 x 0.9 mm;
256 x 256 matrix) were obtained at the beginning of each scanning
session, and an additional GRE field-mapping scan was acquired at the
end of each scanning session. Functional runs used a T2*-weighted sin-
gle shot gradient echo, echo-planar sequence sensitive to BOLD contrast
(TR: 2000 ms; TE: 30 ms; FA: 90°; FOV: 192 mm; voxel: 3 x 3 x 3 mm)

with generalized auto calibrating partially parallel acquisitions (GRAP-
PA). Each scanning session lasted approximately 90 min.

Data analysis

A graphical summary of the data analysis procedures is presented in
Fig. 1. The starting points in this flowchart, where data are entered into
the analysis, are highlighted with broken-line boxes. The procedure
starts with the definition of 742 small clusters of voxels that were
used as units of subsequent analyses (see first row in Fig. 1), which
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Summary of the network measures included in the present study and their observed relation to behavior. Symbols: i, j, and h index nodes; N is the total number of nodes; m indexes mod-
ules; M is the total number of modules; Wj;is the weighted connection between nodes i and j (measured as the absolute value of the correlation between nodes); k; is the degree of node i
(the number nodes in the network that are connected to node i); py; is the number of weighted shortest paths between nodes h and j; py,(i) is the number of those paths that pass through
node; g;is the module to which node i is assigned, 5(g;g;) is the Kronecker delta (equal to one when g; and g; are equal, and zero otherwise);s™ and 0™ are the mean and standard deviation
(respectively) of the strength distribution within module m.

Network Equation Typical interpretation Average relation to Average relation to Interpretation of results

Measure accuracy speed

Strength N Magnitude of connectivity between Negatively related to Overall, slight bias Higher accuracy was accompanied

Si= EWU two areas; nodes with a high accuracy across most ROIs.  toward a positive by a reduction in connectivity across
strength are hubs of the system, Positively related to relation across the brain. the brain, but an increase in the
thought to play an influential role in accuracy in visual areas, Not localized in any connectivity of visual areas. Higher
routing information. particularly in extrastriate  particular ROI or area speed was accompanied by a slight

cortex. type. bias toward stronger connectivity
across the brain, but this was not
consistent in any given region.

Clustering N N Measure of local information Positively related to Positively related to Higher accuracy and speed across
coefficient 1:21 h; VW Wi Wy processing; nodes with a high accuracy across all ROIs. speed across most ROIs.  training in the categorization task

Ci= T k-1 clustering coefficient are thought to The relation was was accompanied by an increase in
process information in local particularly strong in local information processing in the
neighborhoods inside of the subcortical areas. categorization network.
network.

Characteristic > & Measure of the efficiency of Excluded from the analysis ~ Excluded from the Excluded from the analysis due to
path length Li= 1’1-1"";{61%} information transmission across the due to almost perfect analysis due to almost almost perfect negative correlation

whole brain; nodes with a short negative correlation with perfect negative with strength. See results for
characteristic path length are strength. See results for correlation with strength.

thought to be able to transmit strength. strength. See results for

information quickly to all areas of strength.

the brain.

Betweenness b= 3 Pri(i) Measure of bottlenecks or critical Inconsistent relation across  Negatively related to Higher speed across training was

centrality ! 7h,' Th] points in information transmission;  nodes and area types. Some speed in most ROIs. A related to a decrease in routing of
hej hei, j#i nodes with high betweenness specific ROIs show stronger  small number of ROIs information transmission through
centrality are thought to be hubs of  relations on average (see had a small positive nodes.
the system that are critical in routing main text). relation (see main text).
information between otherwise
disconnected sets of brain regions.

Intra-modular z=s" 3" Measure of the magnitude of Positively related to Inconsistent relation Higher accuracy across training was
strength o connectivity that a node has to its accuracy in subcortical and  across nodes and area related to stronger connectivity of
(standardized) where own cognitive system, or functional —motor areas. Negatively types. Some specific ROIs subcortical and motor areas within

! module; nodes with high related to accuracy in visual ~show stronger relations  their functional modules, but weaker

N intra-modular strength are thought  areas, frontal areas and on average (see main connectivity of visual areas, frontal
st = _ZWijﬁ(gi«, g;) toprocess information hippocampus. text). areas, and hippocampus within their
=1 predominantly related to the functional modules.
function of that module.

Participation M2 Measure of the degree to which a Positively related to Inconsistent relation Higher accuracy was accompanied

coefficient Pi=1-3 &) node communicates with other accuracy across most ROIs.  across nodes and area by an increase in connectivity across

cognitive systems or functional
modules; a node with a high

participation coefficient is thought of

as a connector node, that can
potentially transmit or gate
information between modules.

types. Some specific ROIs
show stronger relations
on average (see main
text).

functional modules in the
categorization network.

was performed on a standard T1-weighted structural image (MNI152-
T1-2 mm). Our analysis focused only on a number of ROIs known to
be related to category learning from previous research, which are
subdivided into a number of smaller (12 mm?) voxel clusters, which
served as nodes in the network analysis.

Functional scans from each block of training were separately
preprocessed and transformed to standard MNI152-T1-2 mm space.
Then the average BOLD signal from each node was computed and a
wavelet transform was applied to this average, resulting in a vector of
wavelet coefficients for each node (see second row in Fig. 1). Wavelet
coefficients corresponding to a scale in the range 0.06-0.125 Hz were
correlated across nodes, to obtain a 742 x 742 correlation matrix
representing functional connectivity in the brain network associated
with category learning (see third row in Fig. 1). Correlation matrices
were then thresholded to obtain sparser connectivity matrices, from
which a number of graph statistics were computed (see left part of
fourth row in Fig. 1). Graph statistics were computed for each node of
the network, providing a characterization of its topological role in the

network at a particular point in training (block). Note that our focus
on local node measures (and exclusion of global measures) is related
to the goals of this study: local statistics are much more sensitive to
local changes in functional connectivity, which we expect to be more
relevant than global changes, based on the processes known to drive
category learning in humans.

From the raw behavioral data of each participant, we obtained mean
response times and mean proportion of correct responses in each block
of training (rightmost box in fourth row of Fig. 1). These measures of
performance were separately used as a dependent variable in a multi-
level regression, which had the previously computed graph statistics
as independent variables. Thus, the regression analysis was repeated
ateach node, and it represented an attempt to determine to what extent
changes in the topological role of a node, as quantified through network
science tools, could explain changes in a specific measure of perfor-
mance. Recall that changes in the two measures of performance, re-
sponse times, and accuracy, are thought to reflect different learning
processes (see “Introduction”).



224 FA. Soto et al. / Neurolmage 141 (2016) 220-241

y =-66 mm

(a)

y =-51 mm

Pallidum
Body and tail of caudate
Head of caudate

Medial dorsal thalamus

Ventral anterior /
ventrolateral thalamus

Putamen

Supplementary motor
Primary motor

Ventral premotor

Dorsal premotor

Posterior anterior cingulate
Extrastriate

Inferior temporal

Medial anterior cingulate

Pre suplementary motor

Dorsolateral prefrontal
Ventrolateral prefrontal

Hippocampus

Fig. 2. Location of the ROIs and some of the nodes used in this study. Different ROIs are represented by different hues. ROIs belonging to the same anatomical category have been painted
using similar hues, with hues close to red representing subcortical areas, hues close to green representing motor areas, hues close to yellow representing visual areas, and hues close to blue
representing high-level cortical areas. Different nodes inside each ROI are painted using different levels of brightness.

A number of regression models varying in complexity (i.e., the level
of interactions among graph statistics included in the model) were
fitted to the data from each node, and standard model selection proce-
dures were used to (a) determine whether a particular node was pre-
dictive of changes in behavior and (b) select the model that explained
the data best at a predictive node (see bottom of Fig. 1). This first anal-
ysis allowed us to determine to what extent changes in the topological
role of small brain regions could explain changes in behavior across
training, and it included models of any complexity (i.e., any level of in-
teractions among graph statistics) to explore the possibility that com-
plex, nonlinear relations exist between graph statistics and behavior.
An additional analysis of regression coefficients was carried out to de-
termine the specific relation between each individual graph statistic
and behavior. This analysis included only nodes with a best-fitting
model that lacked interaction terms, because only in this case are re-
gression coefficients easily interpretable.

In the following sections, each of the steps in our data analysis pipe-
line is described in more detail.

Definition of regions of interest

We were interested in measuring the functional connectivity of local
clusters of voxels within ROIs that are thought to be part of the brain
network involved in category learning. With this goal in mind, we

started by defining 36 anatomical ROIs (18 anatomical areas, one in
each hemisphere) previously reported to be involved in visual category
learning and automaticity. For a more in-depth discussion of the hy-
pothesized functional role of each ROI in categorization and the empir-
ical evidence, see Soto et al. (2013)%.

The anatomical boundaries of each ROI were created in MNI152-T1-
2 mm standard space using atlases included in FSL (Harvard-Oxford
structural atlases, Oxford thalamic connectivity probability atlas, and
Juelich histological atlas). Fig. 2 includes eight coronal slices showing
the location of these ROIs in standard space. Different areas are filled

! The neurocomputational models that inspired the present study do not clearly identi-
fy what visual sensory areas are involved in category learning, as different tasks are likely
to recruit different areas. The present analyses include extrastriate cortex because this area
was active during stimulus processing according to previous analyses of the data
(Waldschmidt and Ashby, 2011). Inferotemporal cortex is included due to its importance
among visual areas in the literature on the neurobiology of visual categorization. Although
primary visual cortex was included in previous analyses (Soto et al., 2013), this region was
not included in the present study. Primary visual cortex is a quite large area that would
have added many nodes to our networks, substantially increasing the computational cost
of our analyses. On the other hand, primary visual cortex is neither recruited for stimulus
processing in the current task (Waldschmidt and Ashby, 2011) nor consistently associated
with visual categorization in the previous literature. Furthermore, unlike other visual
areas, primary visual cortex does not send projections to the striatum of the basal ganglia.
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with different colors, with similar hues for visual (close to yellow),
motor (close to green), subcortical (close to red), and high-level cortical
areas (close to blue). Visual areas included the extrastriate cortex and
inferotemporal cortex. Motor areas included primary motor cortex
and premotor cortex. The premotor cortex was divided into the supple-
mentary motor area (SMA), pre-SMA, ventral premotor area, and dorsal
premotor area as defined by (Picard and Strick, 2001). Subcortical areas
included the caudate, putamen, pallidum, and thalamic areas. The cau-
date was divided into a head region and a body and tail region according
to Nolte (2008). Using the Oxford thalamic connectivity probability
atlas, we defined the medial dorsal nucleus of the thalamus as the tha-
lamic area connected to prefrontal cortex, and the ventral anterior and
ventral lateral nuclei of the thalamus as the thalamic area connected
to primary motor and premotor cortices (Martin, 2003). Other cortical
areas included the anterior cingulate cortex (ACC), prefrontal cortex
(PFC), and hippocampus. The medial and posterior parts of the ACC
were extracted following (Vogt et al., 2004). Following the definition
given by Petrides and Pandya (2004), the dorsolateral PFC was extract-
ed by joining the superior and middle frontal gyri and subtracting all
premotor areas. Ventrolateral PFC was extracted using an inclusive def-
inition from (Petrides and Pandya, 2004), which includes Brodmann
areas 44, 45, and 47. For each of the aforementioned areas, we defined
a left and a right ROL

Definition of network nodes

The study of functional networks requires a definition of nodes (re-
gions of interest) and a definition of edges (measures of the functional
connectivity between nodes). Functional connectivity measures are
stored in an adjacency matrix W, with cell Wj; representing the func-
tional connectivity between nodes i and j. The matrix W is the starting
point for all network-based analyses (see below). Two common ways
to define nodes in the study of functional networks are (i) the areas ob-
tained from a brain atlas and (ii) spheres of a given radius centered at
coordinates of interest (Varoquaux and Craddock, 2013). Here we take
an intermediate strategy between those two approaches. We focused
on the atlas-based ROIs defined in the previous section, which are
thought to cover most of the brain network involved in visual category
learning (see Soto et al., 2013). This approach allowed us to cover as
much as possible of the functional network related to category learning
that has been identified in the previous literature. Simply defining
nodes using statistical contrasts on our neuroimaging data would have
reduced coverage of such network and it would have forced us to
focus on regions that are important at the group level (it was necessary
to use a single definition of nodes for all participants, to perform analy-
ses at each node, see below), discarding important nodes at the level of
individual participants. However, averaging the signal from such large
areas could make it difficult to determine whether small clusters of
voxels within each area are specifically related to categorization perfor-
mance. Therefore, we subdivided each ROl into small clusters of voxels.
Starting with a brain mask in MNI152-T1-2 mm standard space, we de-
fined a rectangular box that enclosed this mask and divided it into
12 x 12 x 12 mm cubes (6 x 6 x 6 voxels). This size is comparable to
the spheres of 5-10 mm radius commonly used in the literature
(Power etal,, 2011; Varoquaux and Craddock, 2013). If at least 75 voxels
(~35%) of a cube fell inside an ROI, then the overlap between the cube
and the ROI was defined as a node (for a similar approach, see
Meunier et al., 2009). There was no spatial overlap between nodes
(i.e., each voxel was included in only one node). This resulted in a
total of 742 nodes, an order of magnitude larger than the common
Automated Anatomical Labeling (AAL) atlas (Achard et al., 2006), finely
covering the visual category learning network.

fMRI data preprocessing

The data series from each block was preprocessed using FEAT (fMRI
Expert Analysis Tool) version 5.98 in FSL (www.fmrib.ox.ac.uk/fsl).
Preprocessing included motion-correction to the middle volume in

the series using tri-linear interpolation with six degrees of freedom in
MCFLIRT (Jenkinson et al., 2002), slice timing correction (via Fourier
time series phase-shifting), BET brain extraction, and a high pass filter
with a cutoff of 50 s. The data were not spatially smoothed during pre-
processing to avoid artificially increasing the correlation between adja-
cent network nodes (Achard et al., 2006). Each functional scan was
registered to the corresponding structural scan using FLIRT (Jenkinson
et al., 2002; Jenkinson and Smith, 2001) linear registration with its de-
fault settings. Each structural scan was registered to the MNI152-T1-
2 mm standard brain using FNIRT (Andersson et al., 2007) nonlinear
registration with its default settings. The resulting linear and nonlinear
transformations were jointly used to transform the data series from
subject space to standard space using tri-linear interpolation.

Computation of functional connectivity matrices

We built a functional connectivity matrix from each of the 24
preprocessed data series (from 6 separate blocks in each of 4 scanning
sessions) separately for every participant. We chose to focus on task-
related functional connectivity, and therefore removed all volumes
before the first stimulus presentation and 20 s after the last stimulus
presentation. The number of volumes in each time series varied across
individual scans, with a mean of 298.53 and standard deviation of
13.16. The time series of each voxel in a node were averaged and the
maximume-overlap discrete Daubechies-4 wavelet transform (Percival
and Walden, 2000) of this averaged signal was computed using the
WMTSA toolbox for MATLAB version 0.2.6 (Cornish, 2006). The wavelet
transform was computed at three scales and, because the sampling
frequency (TR) was 2 s, scale one corresponded approximately to
0.125-0.25 Hz, scale two corresponded approximately to 0.06-
0.125 Hz, and scale three corresponded approximately to 0.06-
0.03 Hz. All analyses focused on scale two, which contains the most rel-
evant information for the goals of the present study and has been used
in previous studies relating changes in network measures to behavior
(e.g., Bassett et al., 2011; Ekman et al., 2012). Although scale one in-
cludes frequencies below the Nyquist frequency of 0.25, which could
potentially carry information about functional connectivity, the hemo-
dynamic response function acts as a low-pass filter on the underlying
neural activity and the signal in high frequencies close to the Nyquist
limit can become uninformative (Sun et al., 2004). This is confirmed
by experimental estimates showing that both task-related functional
connectivity (Richiardi et al., 2011; Sun et al., 2004) and resting-state
functional connectivity (Cordes et al., 2001; Richiardi et al., 2011) are
found predominately in the low-frequency band of 0.00-0.15 Hz and
not in higher frequencies.

To build each functional connectivity matrix, we computed the Pear-
son correlation coefficient between the wavelet coefficients corre-
sponding to each pair of nodes. We chose a threshold value above
which the correlation coefficients were retained and below which the
correlation coefficients were set to zero. The threshold was chosen sep-
arately for each correlation matrix, in two steps that had the goals of
controlling false positive statistical associations and obtaining sparse
networks. First, a t-test was used to determine whether the correlations
deviated significantly from zero and the obtained p-values were
corrected for multiple comparisons using a false discovery rate of 5%
(Benjamini and Hochberg, 1995). The minimal possible threshold was
set to the critical value in this omnibus test, which controlled the ex-
pected rate of false discoveries in each correlation matrix. Second, the
value of the threshold was gradually increased in steps of 0.01 and the
maximum value yielding a fully connected network was retained
(i.e., there was a path between every two nodes in the network). This
further reduced the number of edges in the graph, being consistent
with the sparsity of anatomical connections in the brain (see Bassett
et al., 2006; Meunier et al., 2009). The end result is an adjacency matrix
W representing a weighted functional network, with elements W;; equal
to zero for pairs of nodes with correlations below the threshold and Wj
equal to the wavelet correlation for pairs of nodes with correlations
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above the threshold. In contrast to the common binary network
construction, we chose to employ these weighted networks which re-
tain neurophysiologically relevant information about the strength of
functional interactions between network nodes (Bassett et al., 2012;
Lohse et al., 2013; Rubinov and Sporns, 2011).

Computation of network theory measures

We computed six network measures for each functional connectiv-
ity matrix using the Brain Connectivity Toolbox for MATLAB (Rubinov
and Sporns, 2010): strength, clustering coefficient, characteristic path
length, betweenness centrality, intra-modular strength z-score, and
participation coefficient. Table 1 summarizes information about these
measures, including the equations used to compute them, their typical
interpretation in the neuroscientific literature, how they were related
to performance measures in the present study (on average), and the in-
terpretation of such results. Network measures were selected from two
surveys on network diagnostics (Costa et al., 2007; Rubinov and Sporns,
2010) because collectively they parsimoniously capture the local
structure of the network surrounding individual network nodes. To fa-
cilitate interpretation of results and avoid overly complex regression
models, we chose to decrease the number of diagnostics employed by
(i) focusing on measures that are commonly used in the neuroscientific
literature to facilitate ease of comparison between studies, and (ii) not
including multiple measures that provided significantly correlated
information.

The degree of a node is the number of nodes to which it connects.
Specifically, let a;; be a binary variable (i.e., 1 or 0) representing whether
or not a connection exists between nodes i and j, and let N represent the
total number of nodes. Then the degree of node i is computed as

N
k= ay (1)
=

Node strength is an extension of the definition of degree to weighted
networks (Barrat et al., 2004) and is defined as the sum of the weights of
a node's connections to other nodes. Let Wj; represent the absolute
value of the correlation between nodes i and j. The strength of node i is

N
si=y Wi (2)
=

The weighted clustering coefficient of a node is the fraction of its
neighbors that are neighbors of each other. The weighted clustering co-
efficient of node i can be defined as (Onnela et al., 2005)

N N
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The weighted characteristic path length (Newman, 2010) of a node is
the average of its weighted shortest path lengths, which are the sum of
link lengths separating the node from all other nodes in the network. Let
vi_;j represent the set of weighted links along the weighted shortest
path from node i to j. Then the weighted characteristic path length
was computed as

1
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The weighted betweenness centrality of node i is the number of
shortest paths in the network that pass through node i. Let py; represent
the number of weighted shortest paths between nodes h and j, and let

pnj(i) represent the number of those paths that pass through node i.
Then the weighted betweenness centrality of node i is (Freeman, 1978):

Pri(i
b Y 20 ®)
h.j phj
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The calculation of additional network diagnostics first required the
determination of a partition of network nodes into modules. As in pre-
vious research aimed at detecting the community structure of brain net-
works (e.g., Alexander-Bloch et al,, 2012; Bassett et al., 2011; Chen et al.,
2008; Meunier et al., 2009), the partition of nodes into modules was
found by maximizing a modularity quality function. For a given parti-
tion, g; and g; represent the modules to which nodes i and j are assigned,
respectively. The function 6(g;g;) is the Kronecker delta, and therefore is
equal to one when g; = gjand zero otherwise. Then a modularity quality
function can be defined as (Newman, 2004)

Q=2 {W"f_ %]S(g“gj) ()

where

S=>Ww;
iJ

We used a Louvain-like locally greedy algorithm (Blondel et al.,
2008) to find the partition of nodes into communities that maximized
Q. Theoretical work (Good et al., 2010) has shown that maximization
of Q is complicated by the fact that many different partitions yield
near-optimal values of Q, together forming a high-modularity plateau
in the optimization landscape. To deal with this near-degeneracy, we
performed 100 optimizations of the modularity quality function using
a Louvain-like locally greedy algorithm and we extracted a consensus
partition from the resulting 100 partitions using the consensus partition
method proposed by Bassett et al. (2013a). Additional results of the
analysis of modularity can be found in the supplementary material. Im-
portantly, these results showed that neither modularity nor the number
of modules changed significantly as a function of training block, sug-
gesting that global properties of the network partition into modules
were relatively stable.

We were interested in determining how local network properties
(i.e., the topological features of specific nodes) related to the partition
into modules might be able to explain changes in behavior. With this
goal in mind, we computed two additional network measures: intra-
modular strength and participation coefficient.

Given a partition of the network into modules, the intra-modular
strength is the sum of connection weights of a node with nodes from
its own module m:

s = iWU‘S(gi:gj) (7)

=

This value is standardized to obtain an intra-modular strength z-
score (based on the binary version of this diagnostic first introduced
in Guimera and Amaral, 2005):

Zi = S}n —3s" 3
Tom ®
where s™ and 0™ represent the mean and standard deviation (respec-
tively) of the strength distribution for module m.
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Given a partition of the network into modules, the participation
coefficient (based on the binary version of this diagnostic first intro-
duced in Guimera and Amaral, 2005) measures the uniformity of the
distribution of connections of a node to nodes from all partitions. Values
close to one reflect a uniform distribution of connections, and values
close to zero reflect a high concentration of connections to only one or
a few modules. The measure is defined as

-1

Multilevel regression

We used multilevel regression (Gelman and Hill, 2007) to explore
the relationship between local network dynamics and behavioral
changes across blocks of training in the categorization task. This is an
extension of simple linear regression that allows us to define
participant-specific terms in the model and better capture the nested
structure of the data. As in simple linear regression, the outputs are re-
gression weights that can be interpreted as quantifying the influence of
the predictors (i.e., network measures) on the outcome variable
(i.e., behavioral measures). These analyses were performed using the
package Ime4 (Bates et al., 2014) within the statistical software R v.
3.0.2 (R Development Core Team, 2014). Accuracy and mean correct re-
sponse time at each training block were used as outcome variables in
separate analyses, with node measures as predictor variables.

Because collinearity and multicollinearity of the predictors can have
adverse effects on the estimates of regression coefficients (Dormann
et al,, 2013; Rawlings et al., 1998), we performed a collinearity analysis
(see supplementary material) that revealed that characteristic path
length and strength were almost perfectly correlated across all nodes
(with a median of —0.97 and a range of —0.85 to —0.99). For this
reason, we decided to exclude characteristic path length from the
regression analysis. Note that the almost-perfect negative correlation
between strength and characteristic path length means that both mea-
sures carried the same information about integrative processing in our
networks. The remaining predictors were strength, clustering coeffi-
cient, betweenness centrality, intra-modular strength z-score, and
participation coefficient. The collinearity analysis did not reveal any re-
maining issues in this set of predictors.

Initial scrutiny of the behavioral data revealed extremely poor per-
formance (near-chance performance and response times larger than
1000 ms) by a single participant during the first three blocks of training.
Because performance jumped to high levels after these three blocks, it is
likely that the initial outliers were produced by the introduction of the
task in the scanner (e.g., by misunderstanding of instructions). The
three outlier data points were removed from all analyses to avoid the in-
fluence of a likely artifact on the results.

To determine possible violations of the assumptions underlying
linear regression, particularly homoscedasticity and normality of resid-
uals, we performed an analysis of the distribution of residuals after
performing an initial regression analysis using the untransformed per-
cent of correct choices and mean response times (see supplementary
material). This analysis revealed violations of the assumptions of the lin-
ear regression model. These violations were corrected by applying an
arcsine-square-root transformation to the accuracy data and a power
transformation to the response time data (Rawlings et al., 1998; see
supplementary material).

Because our main interest was to explore how local network dynam-
ics are related to behavioral changes across training in the categoriza-
tion task, block was the main unit of analysis in the model. Note that
each model was fit to a total of 237 data points (each data point
corresponded to a block of 80 trials; there were 10 participants and 24
of such observations per participant; three points were excluded from
the analysis of a single participant) and the model was built mainly to

explain variation in performance across training blocks as a function
of corresponding changes in graph statistics. Some individual differ-
ences are also captured by the model, but the main focus is on variability
due to learning of the categorization task. We used a varying-intercepts
model (Gelman and Hill, 2007), which includes a group intercept and
individual intercepts for each participant, but only a group regression
weight for each predictor. This implements the assumption that differ-
ent participants showed different baseline levels of performance in the
task, but that the relation between network measures and behavior
(represented by a single regression coefficient) was the same across
participants.

For each node and outcome variable, six models were initially fit to
the data: a null model and five explanatory models. It is important to
note that model selection does not follow the logic of frequentist null
hypothesis significance testing. However, after model selection, we
did confirm whether the selected model was better than the null
through a likelihood ratio test. This test does follow frequentist logic
and is therefore corrected for multiple comparisons.

The null model included only intercepts and no predictors,
representing a baseline of performance that was constant across blocks
but could vary across participants. This model was used to test whether
variations in the predictors across blocks could explain additional vari-
ation in behavior. The simplest explanatory model included each of
the predictors, but no interaction terms. Although this model had the
advantage of being easy to interpret, theoretical considerations suggest
that specific combinations of values for two or more predictors could
describe the role of a node in the network better than all predictors con-
sidered separately. For example, it has been suggested that specific
combinations of values for the participation coefficient and intra-
modular strength z-score might determine a set of discrete roles for net-
work nodes (Guimera and Amaral, 2005). Because we had no hypothe-
ses about the specific interaction terms that might be important for the
prediction of behavior, our approach was to fit a sequence of models of
increasing complexity, with each model in the sequence incorporating
all interactions one level above those included by the previous model.
Thus, one model included all interactions between two predictors, the
next model included all interactions between two or three predictors,
and so on. The most complex model that we considered included five-
predictor interactions.

Each model was fit to the data using maximum likelihood estima-
tion. Model selection was performed using the Akaike information crite-
rion (AIC Akaike, 1974). However, as the AIC is known to be biased for
small samples (Burnham and Anderson, 2004), we used a version that
corrects for this bias (Hurvich and Tsai, 1989):

AIC = —2logL+2p<?f_]> (10)

where L is the likelihood of the data given the model, p is the number of
free parameters in the model and T is total number of data points.

Given a set of candidate models indexed by d =1, 2, ... D, it is
possible to obtain an estimate of the probability that each of them is
the best model in the set, computing AIC weights (Burnham and
Anderson, 2004):

exp(—4Aq/2)

Altwy = —g———"— (11)
3 exp(—4r/2)

where

Ad = AICd _AICmin (]2)

and AIC, is the lowest AIC value for the set of D models. The best-
fitting model for a particular node is the one that produces the smallest
AIC and largest AlCw.
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AIC selects a model with enough complexity to explain as much var-
iability in the behavioral data as possible without overfitting (Burnham
and Anderson, 2004). We used this approach to determine (i) whether
including node measures as predictors in the model provided a better
description of behavior than the null model, and (ii) whether or not
complex models (with second- or higher-order interactions among pre-
dictors) would provide a better description of behavior than a simple
model assuming independent influences from each predictor.

After model selection, nodes for which the best-fitting model was
the null model were removed from the following analyses. When the
best-fitting model was not the null, we confirmed that the selected
model provided a better fit than the null model by performing a
likelihood ratio test. The p-values from such tests were corrected for
multiple comparisons using a false discovery rate of 5% (Benjamini
and Hochberg, 1995). Only nodes in which the best-fitting model pro-
vided a significantly better fit than the null model were included in
the subsequent analyses. In this way, the outcome of model selection
with AIC was supported by an additional criterion based on a traditional
statistical test. This procedure resulted in a sample of nodes that were
deemed predictive of behavior according to a rather conservative
criterion.

Analysis of regression coefficients

Because the best-fitting model in the large majority of predictive
nodes did not include interaction terms (see Results section), we were
able to focus on such nodes to study the relationship between node
measures and behavior as expressed through the regression coefficients
from the model. Because better performance is associated with higher
accuracy but lower response times, we reversed the sign of the regres-
sion coefficients from the response time analysis to make them more
comparable to those from the accuracy analysis.

In the first part of this analysis, we determined whether the overall
distribution of regression coefficients across nodes was biased toward
positive or negative values for different node measures. We would ex-
pect such biases if a particular node measure was predictive of specific
changes in behavior across a majority of nodes. For example, an increase
in the strength of many connections (i.e., more integrative processing)
could be predictive of increments in accuracy. Under the null hypothesis
of centered distributions (i.e., with median equal to zero), the number of
coefficients larger than zero follows a binomial distribution with param-
eter p = 0.5. We used this fact to statistically determine whether the
bias present in each distribution was larger than expected by chance.

Next, we determined whether the distribution of coefficients for a
given predictor varied depending on whether the outcome variable
was accuracy or response time. As indicated earlier, changes in these
two behavioral measures should correlate with different learning mech-
anisms: accuracy with early category learning and response time with
later learning in which the categorization responses become automatic
(Ashby et al.,, 2007). To compare the two distributions, we performed a
permutation test on the absolute difference in median regression
coefficients, by randomly re-ordering the outcome label (“accuracy”
and “response time”) of each regression coefficient 10,000 times and
computing the absolute difference in medians after this random re-
ordering. This resulted in a distribution of difference values under the
null hypothesis that the distribution of regression coefficients was the
same for accuracy and response times, which was used to determine
whether the observed difference was significantly higher than expected
by chance.

Finally, to analyze the distribution of mean AICw and regression co-
efficients across ROIs, we ranked such values and computed mean ranks
for different ROI types (subcortical, visual, motor, and high-level areas).
To determine whether these mean ranks were different from what
would be expected by chance, we performed permutation tests by ran-
domly re-ordering the ROI types of all nodes that were used in a partic-
ular analysis 10,000 times and computing the mean rank of each ROI
type after this randomization. This resulted in a distribution of mean

ranks under the null hypothesis of no effect of ROI type, which was
used to determine whether the observed rank for each ROI type was sig-
nificantly higher than expected by chance. The same distributions were
used to determine whether the observed difference between accuracy
and response time in mean rank of each ROI type was significant.

Results
Behavioral results

Fig. 3C-D shows behavioral data as a function of training blocks for
individual participants and the group mean, demonstrating that perfor-
mance improved across blocks. Interestingly, mean accuracy reached
asymptotic levels around block 7 (second scanner session) while
mean response time continued to improve across training. Fig. 2E con-
firms that accuracy and correct response time were weakly correlated
across blocks and participants (Pearson's r = -0.2, p < 0.01), consistent
with the possibility that different neurophysiological mechanisms
might underlie changes in each behavioral variable. Note also that accu-
racy and speed (the inverse of response time) have a small positive cor-
relation, a pattern opposite of what we would expect if there was a
speed-accuracy tradeoff in our data (for a review, see Heitz, 2014). It
is likely that the magnitude of such an effect, if present in our data,
was very small in relation to the improvements in performance (both
speed and accuracy) with practice in the categorization task. Thus, we
can safely assume that any observed dissociation between accuracy
and response times is not due to a speed-accuracy tradeoff.

Model selection and distribution of predictive nodes

Out of the 742 nodes in each network, 148 passed our criteria to be
considered predictive of changes in accuracy across training, whereas
129 passed our criteria to be considered predictive of changes in re-
sponse times. The best-fitting models at these nodes had variable com-
plexity, as indexed by the level of interaction terms included in the
model. Histograms of the frequency distributions of selected levels of in-
teraction are shown in Fig. 4A. For the large majority of nodes, the se-
lected model was one in which no interaction terms were included
(level 1), followed by a small proportion of nodes in which the best
model included only interactions between pairs of predictors (level 2).
Best models with interaction levels larger than 2 were comparatively
infrequent. These results suggest that in most cases complex combina-
tions of node measures are not required for the prediction of variations
in behavioral measures. Rather, individual node measures can be related
to behavioral changes in a straightforward, easily interpretable manner.
We therefore focused on those nodes for which the best-fitting model
had no interaction terms and we determined the relationship between
each node measure and behavior variables through an analysis of re-
gression coefficients (see below).

Fig. 4B shows the distribution of AICw (Eq. 11) for predictive nodes
across cortical regions. The bar plots depict mean AICw across ROIs,
with ROIs ranked from highest to lowest AICw. Nodes in which the
best model was the null model were assigned an AICw of zero. The
resulting values summarize how predictive of behavior each ROI was
relative to its overall size (i.e., number of nodes in the ROI). Bars in
this figure, and in all subsequent bar plots, are colored following
the scheme presented in Fig. 2. Different ROIs are represented with
different colors, with ROIs of the same type sharing similar hues.
Yellowish bars represent visual areas, greenish bars represent motor
areas, bluish bars represent areas related to high-level cognition (pre-
frontal areas and the hippocampus), and reddish bars represent subcor-
tical areas.

Fig. 4B shows that subcortical ROIs were the most highly predictive
of behavior in the analysis of accuracy. Areas related to high-level cogni-
tion were the least predictive of behavior, whereas motor and visual
areas tended to be in the middle of the ranking. A permutation test
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Fig. 3. Graphical summary of the behavioral task used in this study. (A) Example of a stimulus presented to participants in the categorization task. (B) Representation of the category
structure learned by participants. (C) Proportion of correct responses as a function of scanning blocks; lines of different color represent different participants and the grey line
represents the group mean. (C) Mean correct response time as a function of scanning block; lines of different color represent different participants and the grey line represents the
group mean. (E) Scatterplot of the relationship between proportion of correct responses and correct mean response time across participants and scanning blocks.

revealed that the mean rank of subcortical areas was significantly higher
than expected by chance, X = 9.83, p < 0.001, the mean rank of areas
related to high-level cognition was significantly lower than expected
by chance, X = 26.5, p < 0.01, and the mean rank of visual (x = 17)
and motor (X = 21.5) areas were not significantly different from chance,
p>0.1.

Fig. 5 shows several coronal slices with the AICw obtained from se-
lected individual nodes; the color of each node (red-yellow) represents
the magnitude of its AICw, and the limits of ROIs have been drawn using
lines colored according to the scheme presented in Fig. 2. The overall
pattern of results previously described for the mean AICw can also be
observed in individual nodes. For example, the highest-ranked ROI in
Fig. 4B is the left head of the caudate. In the left side of Fig. 5, this struc-
ture is visible in two slices (y = 9 mm and y = 24 mm, at the top-right
among subcortical structures), and in both cases the few nodes inside
the ROI are classified as predictive and have relatively high AICw. A sim-
ilar pattern repeats across subcortical ROIs (red-tone lines centrally lo-
cated fromy = —21 mm to y = 24 mm); given the relatively small
size of most of these structures, the number of nodes within them that
have high AICw is quite high. On the other hand, it can be seen in
Fig. 4 that the frontal cortex and hippocampus (blue-tone lines) are
relatively large areas, but not many of the nodes within them have a
high AICw. This explains why these areas have a low average rank in
Fig. 4A.

Fig. 4B reveals a similar ranking of areas in the analysis of response
times, that is, subcortical areas were ranked relatively high, areas relat-
ed to high-level cognition were ranked relatively low, and motor and vi-
sual areas fall between the two extremes. However, the separation of
ranks by area type is less clean than that observed in accuracy. Permu-
tation tests indicated that, for response times, the mean ranks of visual
areas were significantly higher than expected by chance, X = 10.75,
p < 0.05, whereas the mean ranks of subcortical areas (x = 16.5),
motor areas (X = 19.2), and areas related to high-level cognition (X
= 23.3), were not significantly different from what would be expected
by chance (all p > 0.05). Furthermore, it was found that the mean rank of
subcortical areas was significantly higher for accuracy than for response
times, p < 0.05, but differences in other area types were not significant
(p>0.05).

Some of these results are also visible at the level of individual nodes,
as shown in Fig. 5. For example, across all relevant slides in Fig. 5 (from
y = —21 mmtoy = 24 mm), the number of subcortical nodes that are
good predictors of accuracy (left side) is consistently higher than the
number of subcortical nodes that are good predictors of response
times (right side).

Relation between local network measures and behavior

Next, we were interested in characterizing the direction and magni-
tude of the relation between each node measure and behavioral perfor-
mance, which is possible through exploration of the regression
coefficients obtained from the best-fitting multilevel model at each
node. The addition of interaction terms in the model makes the inter-
pretation of each predictor difficult. Fortunately, as shown in Fig. 4A,
for most nodes, the best-fitting model did not include any interaction
terms. We therefore focused on these nodes and ignored the minority
of nodes with best-fitting models that included interaction terms.

Clustering coefficient

Fig. 6 shows the distributions of standardized regression coefficients
for the clustering coefficient, a measure thought in some contexts to re-
late to the efficiency of local information processing (Bullmore and
Sporns, 2009). Panel A shows violin plots with the overall distributions
of regression coefficients across nodes. The contour of each violin plot
represents an estimate of the density of nodes with particular regression
coefficient values, the black bar at the center of each plot represents the
interval containing the central 50% of the values in the distribution
(bounded by the second and third quartiles), and the white circle inside
this bar represents the median of the distribution. Distributions from
both the accuracy and response time analysis are clearly unimodal
and biased toward positive values (binomial p < 0.001 in both cases).
This means that, in general, the presence of higher clustering coeffi-
cients across the network was related to better performance of the
task. The strength of this bias was higher in the analysis of accuracy
than in the analysis of response times (permutation test, p <0.001), sug-
gesting that the clustering coefficient was a stronger predictor of accu-
racy than of response time.
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Fig. 4. Characterization of best-fitting models in predictive nodes in terms of their distribution of complexity and fit to the data. Predictive nodes are those for which variations in network
measures could reliably predict variations in either accuracy or response times (according to our criteria, see “Materials and methods”). (A) Distribution of model complexity for predictive
nodes. Model complexity is indexed here by the level of interaction terms in the best-fitting model for a given node. Models of level 1 are those without any interaction terms, models of
level 2 are those including all interactions between pairs of independent variables, models of level 3 additionally include all interactions of three variables, and so on. (B) Distribution of AIC
weights for the best-fitting model of predictive nodes across regions of interest (bar plots). AIC weight is a measure of the fit of the model to the data. Bars of different color represent

different regions of interest, following the color scheme presented in Fig. 2.

Fig. 6B shows the mean value of regression coefficients for each ROI,
which indicates where in the brain a clustering coefficient was a posi-
tive or negative predictor of task performance. Fig. 7 plots the values
of regression coefficients obtained for selected individual nodes, differ-
ent colors are used to plot positive (red-yellow) and negative (blue)
weights. ROI limits have been drawn in Fig. 7 using the color scheme
from Fig. 2. In the case of accuracy, Fig. 6B shows that almost all of the
ROIs have a positive mean value (only left extrastriate cortex has a
mean slightly below zero). All area types—each represented with a dif-
ferent bar color—tend to include ROIs with high and low ranks. Permu-
tation tests indicated that mean rank was not significantly different
from what would be expected by chance in any area type. The left side
of Fig. 7 also clearly shows that regression coefficients of individual
nodes were predominately positive across all ROIs.

In the case of response times, Fig. 6B shows that only two ROIs show
negative mean values: right posterior ACC and right SMA. For all other
ROIs, higher clustering coefficients were associated with faster response
times on average. Subcortical areas (reddish bars) tended to have high
ranks on average (permutation test: X = 8.11, p < 0.01). All other

permutation tests were not significant. Furthermore, the mean rank of
subcortical areas was significantly higher for response time than for ac-
curacy, p <0.01, whereas the mean rank of motor areas was significantly
higher for accuracy than for response time, p < 0.05. No other differ-
ences in mean rank were significant. Many of these average results are
also visible in the regression coefficients of individual nodes, some of
which are shown in the right side of Fig. 7. Although a number of
nodes have negative values, most nodes have positive values. In partic-
ular, subcortical nodes seem to be predominately positive (see slices at
y=—21mm,y = —6 mm, and y = 9 mm).

In sum, the relation between the clustering coefficient and task per-
formance was quite straightforward: better performance in terms of
both accuracy and speed was accompanied by higher clustering across
all area types, with the relation between clustering and speed being
particularly strong in subcortical areas.

Strength
Fig. 8 shows the distributions of standardized regression coefficients
for strength, which measures the magnitude of functional connectivity
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scheme presented in Fig. 2.

present between nodes in an ROI and the rest of the brain. Fig. 9 plots
the corresponding values of strength regression coefficients obtained
for selected individual nodes. The violin plots in Fig. 8A indicate that
the distribution of strength regression coefficients was biased toward
negative values when the behavioral outcome measure was accuracy
(binomial p < 0.001) and toward positive values when the behavioral

outcome measure was response time (binomial p <0.01). The difference
between the two distributions was statistically significant as measured
by a permutation test, p < 0.01.

As shown in Fig. 8B, an average positive relationship between accu-
racy and strength was found only in four ROIs (left extrastriate cortex,
right head of the caudate, right SMA, and right dorsolateral PFC) and
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Fig. 6. Distributions of standardized regression coefficients for the clustering coefficient measure. (A) Violin plots with the overall distribution of regression coefficients across all predictive
nodes. Predictive nodes are those for which variations in network measures could reliably predict variations in either accuracy or response times (according to our criteria, see “Materials
and methods”). The contour of each violin plot represents an estimate of the density of nodes with particular regression coefficient values, the black bar at the center of each plot represents
the interval containing the central 50% of the values in the distribution, and the white circle inside this bar represents the median. (B) Mean standardized regression coefficient for each
region of interest, indicating whether clustering coefficient computed from nodes in that region was, on average, a positive (bars above dotted line) or negative (bars below dotted line)
predictor of task performance. Bars of different color represent different regions of interest, following the color scheme presented in Fig. 2.
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Accuracy

y =-66 mm y =-6 mm

y =-51 mm
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Fig. 7. Standardized regression coefficients for clustering coefficient, shown for individual selected nodes. Different colors are used to plot positive (red-yellow) and negative (blue)
coefficients. Lines of different color represent ROI borders, following the color scheme presented in Fig. 2.

in all cases the mean regression coefficients had a relatively small abso-
lute value. Visual areas (yellowish bars) showed significantly lower
values than expected by chance (permutation test: X = 6.0, p < 0.01).
The mean ranks for all other area types were well within the distribu-
tion of values expected by chance (permutation test, p > 0.05). These

results are also easily observed in the left side of Fig. 9, where only a
few nodes show a positive weight (red-yellow) and they tend to be
localized posteriorly, in extrastriate and inferotemporal cortices (see
y = —66mmandy = —51 mm). Nodes in other areas have regression
weights that are predominately negative (blue).
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Fig. 8. Distributions of standardized regression coefficients for the strength measure. (A) Violin plots with the overall distribution of regression coefficients across all predictive nodes.
Predictive nodes are those for which variations in network measures could reliably predict variations in either accuracy or response times (according to our criteria, see “Materials and
methods”). The contour of each violin plot represents an estimate of the density of nodes with particular regression coefficient values, the black bar at the center of each plot
represents the interval containing the central 50% of the values in the distribution, and the white circle inside this bar represents the median. (B) Mean standardized regression
coefficient for each region of interest, indicating whether strength computed from nodes in that region was, on average, a positive (bars above dotted line) or negative (bars below
dotted line) predictor of task performance. Bars of different color represent different regions of interest, following the color scheme presented in Fig. 2.
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Fig. 9. Standardized regression coefficients for strength, shown for individual selected nodes. Different colors are used to plot positive (red-yellow) and negative (blue) coefficients. Lines of
different color represent ROI borders, following the color scheme presented in Fig. 2.

In the case of response times, on average, an increase in speed was Results at the level of individual nodes for the analysis of re-
accompanied by an increase in strength in most ROIs, but there are sev- sponse times are plotted in the right side of Fig. 9. At this level, it is
eral exceptions. The mean rank of each area type was not significantly difficult to see the slight bias toward positive regression weights ob-
different from what is expected by chance (permutation test, p > 0.05). served in Fig. 8A, except perhaps in the slides corresponding to y =
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Fig. 10. Distributions of standardized regression coefficients for the participation coefficient measure. (A) Violin plots with the overall distribution of regression coefficients
across all predictive nodes. Predictive nodes are those for which variations in network measures could reliably predict variations in either accuracy or response times
(according to our criteria, see “Materials and methods”). The contour of each violin plot represents an estimate of the density of nodes with particular regression coefficient
values, the black bar at the center of each plot represents the interval containing the central 50% of the values in the distribution, and the white circle inside this bar
represents the median. (B) Mean standardized regression coefficient for each region of interest, indicating whether participation coefficient computed from nodes in that
region was, on average, a positive (bars above dotted line) or negative (bars below dotted line) predictor of task performance. Bars of different color represent different
regions of interest, following the color scheme presented in Fig. 2.
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24 mm and y = —21 mm. The results are also mixed at the level of
ROIs, with most ROIs including nodes with positive and negative
weights. However, in agreement with Fig. 8B, the only ROIs showing
a relatively consistent positive relation between strength and re-
sponse time are visual (inferotemporal cortex, see bottom ROI from
y = —66 mmtoy = —21 mm) and motor (for example, dorsal
premotor cortex at y = —21 mm).

The mean rank of visual areas was significantly lower in the accuracy

analysis than in the response time analysis (permutation test, p < 0.05).

In sum, an increase in accuracy was predicted by a decrease in the con-
nectivity of nodes across the whole network, except for visual areas. On
the other hand, an increase in speed was accompanied by a slight increase
in the connectivity of many nodes, but this bias was not consistently ob-
served in any specific region. On average, although many ROIs showed a
positive relation between speed and strength, there were eight ROIs
that showed the reverse relation (see Fig. 8B), and they were distributed
across all area types. These findings suggest that accuracy and speed are
differentially driven by stronger versus weaker connectivity between
nodes: accuracy requires a cost-efficient decrease in strength whereas
speed is more inconsistently related to strength, showing a tendency to
require a non-localized increase in strength.

Participation coefficient

A weaker form of dissociation between accuracy and response times
was found for all other predictors, with the distribution of regression co-
efficients being biased for one behavioral variable, but not the other. As

Accuracy

y =-66 mm y =-6 mm

- *

y =-51 mm

= -36 mm 24 mm

seen in Fig. 10A, in the case of the participation coefficient, the distribu-
tion is clearly biased toward positive values when the outcome is accu-
racy, p <0.001, but it shows no bias when the outcome is response time,
p > 0.50. The difference between the two distributions was not signifi-
cant, p > 0.05.

Fig. 10B confirms that, on average, an increase in accuracy was ac-
companied by an increase in participation coefficient across practically
all ROIs, with this relation being particularly strong in subcortical
areas and SMA. Subcortical areas (reddish bars) had a mean rank signif-
icantly higher than expected by chance (permutation test: X = 9.82,
p <0.01). Permutation tests for other area types were not significant.
These results can also be observed at the level of individual nodes,
in the left side of Fig. 11. It can be seen there that most nodes
showed a positive relation between participation coefficient and accu-
racy. This relation was particularly strong and consistent in subcortical
nodes (most bright yellow nodes are located in subcortical areas, at
y = -21 mm, -6 mm and 9 mm).

In contrast, Fig. 10B shows that the direction of the relationship
between speed and participation coefficient depended on each specific
ROLI. Area type did not have an influence in the direction of this relation-
ship, as revealed by non-significant permutation tests. The right side
of Fig. 11 confirms that there is no consistent relation between
participation coefficient and speed in any area type, although some spe-
cific ROIs seemed to be more consistent. For example, extrastriate cor-
tex (at y = -66 mm and y = -51 mm) and some subcortical areas
(y = -21 mm and y = -6 mm) show mostly positive regression
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Fig. 11. Standardized regression coefficients for participation coefficient, shown for individual selected nodes. Different colors are used to plot positive (red-yellow) and negative (blue)
coefficients. Lines of different color represent ROI borders, following the color scheme presented in Fig. 2.
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Fig. 12. Distributions of standardized regression coefficients for the intra-modular strength measure. (A) Violin plots with the overall distribution of regression coefficients across
predictive nodes. Predictive nodes are those for which variations in network measures could reliably predict variations in either accuracy or response times (according to our criteria,
see “Materials and methods”). The contour of each violin plot represents an estimate of the density of nodes with particular regression coefficient values, the black bar at the center of
each plot represents the interval containing the central 50% of the values in the distribution, and the white circle inside this bar represents the median. (B) Mean standardized
regression coefficient for each region of interest, indicating whether intra-modular strength computed from nodes in that region was, on average, a positive (bars above dotted line)
or negative (bars below dotted line) predictor of task performance. Bars of different color represent different regions of interest, following the color scheme presented in Fig. 2.

weights, whereas some motor areas (at y = -21 mm) and prefrontal
areas (fromy = 9 mm to y = 39 mm) show mostly negative regression
weights. The mean rank of visual areas was significantly lower for
response time than for accuracy (permutation test, p < 0.05), but other
differences were not significant.

Accuracy

y =-66 mm y =-6 mm

-

y =-51 mm

y =-36 mm = 24 mm

Intra-modular strength z-score

The distribution of regression coefficients for intra-modular strength
z-score in Fig. 12A shows a pattern of results similar to that found for
the participation coefficient: the distribution is slightly biased toward
positive values when the outcome is accuracy (p < 0.05) and shows no
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Fig. 13. Standardized regression coefficients for intra-modular strength, shown for individual selected nodes. Different colors are used to plot positive (red-yellow) and negative (blue)
coefficients. Lines of different color represent ROI borders, following the color scheme presented in Fig. 2.
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bias when the outcome is response time (p > 0.10) and the difference be-
tween both distributions was not significant (p > 0.05). Note that this
qualifies the previously described negative relationship between strength
and accuracy: higher accuracy was predicted by lower strength of connec-
tions across the network, but by higher relative strength of intra-modular
connections, indicating a reorganization of network topology.

Fig. 12B shows that higher accuracy was accompanied by higher
intra-modular strength z-score in all subcortical (reddish bars) and
motor (greenish bars) ROIs, and by lower intra-modular strength z-
score in some visual (yellowish bars) and high-level cognition (bluish
bars) ROIs. The mean rank of subcortical areas was significantly higher
than expected by chance (permutation test:x = 10.82, p<0.05), where-
as the mean rank of visual areas was significantly lower than expected
by chance (x = 25.5, p < 0.01). Other tests were not significant. These
results are also visible from the regression weights of individual
nodes, as shown in the left panel of Fig. 13. Note that although both pos-
itive (red-yellow) and negative (blue) weights are observed, the former
tend to concentrate in subcortical and motor areas (aty = —21 mm,
y = —6 mm and y = 9 mm), whereas the latter concentrate in visual
(y = —66 mm and y = —51 mm, also the bottom of y = —21 mm),
frontal areas (see top-lateral ROIs from y = 9 mm to y = 39 mm),
and hippocampus (bottom of y = —36 mm and y = —21 mm).

From the response time analysis, the distribution of mean values
across ROIs appears less straightforward (see Figs. 12 and 13). Permuta-
tion tests on mean ranks were not significant for any area type (all
p > 0.05). The mean rank of visual areas was significantly lower in the
analysis of accuracy than in the analysis of response time, p < 0.01, but
other differences were not significant.

In sum, since the distribution of regression coefficients for both par-
ticipation coefficient (Fig. 10A) and intra-modular strength z-score
(Fig. 12A) showed a positive bias in the analysis of accuracy, higher ac-
curacy was accompanied by nodes having a connection profile increas-
ingly similar to that of connector hubs (Guimera and Amaral, 2005),
which are nodes that allow communication between functionally segre-
gated network communities. This was true for most ROIs, with the ex-
ception of visual and some high-level cognition areas (Fig. 12B), in
which higher accuracy was accompanied by a connection profile in-
creasingly similar to that of connector non-hubs (that is, higher partici-
pation coefficient, but lower intra-modular strength). The relationship
between the role of a node in the network’'s community structure and
speed in the task seemed idiosyncratic to each specific node and was
not influenced by area type.

Betweenness centrality
Betweenness centrality showed a pattern opposite to that of the pre-
vious two predictors, with the distribution of regression coefficients

(Fig. 14A) being biased toward negative values in the analysis of re-
sponse times, p < 0.001, but not biased in the analysis of accuracy,
p > 0.50. The difference between distributions was significant, p < 0.05.

The distribution of mean coefficients across ROIs (Fig. 14B) reveals
that only nine ROIs showed a slightly positive average relation between
speed in the task and betweenness centrality. These results can also be
observed at the level of individual nodes in Fig. 15. The right panel in
this figure shows that individual regression coefficients for between-
ness centrality were mostly negative (in blue), although some select
regions included positive weights (red-yellow). The latter includes
right hippocampus and inferotemporal cortex (see bottom-left ROIs
in y = —21 mm), and left dorsal premotor cortex (top-right at
y = —21 mm) and medial dorsal thalamus (right-middle aty = —6
mm). The mean ranks of all area types were not significantly different
from what would be expected by chance.

The average relationship between accuracy and betweenness central-
ity depended on each specific ROI and did not seem to be consistent for
any area type. Fig. 14B and the left panel of Fig. 15 show some trends;
for example, many subcortical areas seem to show positive regression
weights (see central areas from y = —21 mm to y = 24 mm; in particu-
lar, both right and left head of the caudate had relatively high positive
weights) and many motor areas seem to show negative regression
weights (see top-lateral cortical areas, in green, from y = —36 mm to
y = —6 mm). However, none of these results were statistically reliable:
all permutation tests on mean rank of different area types were not signif-
icant (p > 0.10). Tests on the difference in mean rank for each area type
between accuracy and response times were also not significant (p > 0.10).

Head motion analysis

Several recent studies have shown that in-scanner head motion arti-
ficially modifies measures of functional connectivity in resting-state
fMRI studies and can affect measures derived from network theory
(Power et al.,, 2014; Power et al., 2012; Satterthwaite et al., 2012; Van
Dijk et al., 2012). To account for a possible effect of head motion on
our results, we repeated our analyses after removing the influence of
head motion from the behavioral variables.

We computed the mean relative displacement (MRD; Satterthwaite
et al., 2013) in each functional scan from estimates of head motion pro-
vided by MCFLIRT (Jenkinson et al., 2002). We used multilevel regres-
sion models with the MRDs as predictors to regress-out the influence
of motion from the values of behavioral variables (accuracy and re-
sponse time). Regressing-out summary statistics of motion in the
group-level analysis has been proposed as a way to control for the ef-
fects of motion that persist after preprocessing at the individual level
(Power et al., 2014; Satterthwaite et al., 2012). We then repeated all
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Fig. 14. Distributions of standardized regression coefficients for the betweenness centrality measure. (A) Violin plots with the overall distribution of regression coefficients across all
predictive nodes. Predictive nodes are those for which variations in network measures could reliably predict variations in either accuracy or response times (according to our criteria,
see “Materials and methods”). The contour of each violin plot represents an estimate of the density of nodes with particular regression coefficient values, the black bar at the center of
each plot represents the interval containing the central 50% of the values in the distribution, and the white circle inside this bar represents the median. (B) Mean standardized
regression coefficient for each region of interest, indicating whether betweenness centrality computed from nodes in that region was, on average, a positive (bars above dotted line) or
negative (bars below dotted line) predictor of task performance. Bars of different color represent different regions of interest, following the color scheme presented in Fig. 2.
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Fig. 15. Standardized regression coefficients for betweenness centrality, shown for individual selected nodes. Different colors are used to plot positive (red-yellow) and negative (blue)
coefficients. Lines of different color represent ROI borders, following the color scheme presented in Fig. 2.

our analyses using these motion-corrected outcome variables. We
found no indication that a motion artifact could drive the results report-
ed here, which were reproduced in the analysis of motion-corrected
data (for more details, see supplementary material).

Discussion

Our results demonstrate that it is possible to successfully explain
variation in performance across training in a categorization task from
the topological network properties of small regions in categorization-
related brain areas. As expected, we found that the topological network
properties of nodes in subcortical areas were particularly informative
about changes in accuracy, but much less informative about changes
in speed of correct responses. This observation is in line with
neurocomputational models of automaticity in categorization (see
Ashby et al., 2007), which predict that changes in accuracy are due to
initial learning supported by basal ganglia, whereas changes in speed
of correct responses are largely due to the development of direct con-
nections between sensory and motor areas as skills become automatic.

The best-fitting models for most nodes did not include interaction
terms, allowing a straightforward interpretation of the relationship be-
tween network predictors and behavior. Increments in accuracy were
predicted by a higher clustering coefficient, participation coefficient
and intra-modular strength z-score, and by lower strength across the
network. The connection strength of nodes within visual areas, both

across the whole network and within modules, did not show the same
relationship with accuracy as in other areas. On the other hand, speed
of correct responding was predicted by higher clustering, higher
strength and lower betweenness centrality.

The pattern of network changes related to increased speed of task
performance is strikingly similar to that reported in a prior study of
motor learning (Heitger et al., 2012), in which participants practiced a
complex bimanual coordination task for four daily sessions and were
scanned while performing the task before and after training. A compar-
ison of functional networks before and after training revealed incre-
ments in clustering, degree, and strength, together with decrements in
path length and betweenness centrality. The similarity of the present re-
sults and those found by Heitger et al. (2012) suggests that these chang-
es in network properties may form a generalizable mechanism of
behavioral change across all highly practiced procedural tasks.

With the exception of the clustering coefficient, we observed a disso-
ciation between accuracy and response times regarding which network
properties could consistently explain behavioral changes. For example,
higher strength predicted lower accuracy but higher speed of correct re-
sponses. This dissociation is in line with the idea that different learning
mechanisms mediate changes of accuracy and speed throughout cate-
gorization training. However, the specific relationships found between
graph statistics and behavior are not predicted by neurocomputational
theories of categorization and are easier to interpret within the more
general framework of network science.
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Effortful processing, automaticity, and network topology

Recent work has linked effortful information processing during
working memory (Kitzbichler et al., 2011) and preparatory attention
(Ekman et al., 2012) to higher integration and lower segregation in
functional networks. Neurocomputational models (e.g., Ashby et al.,
1998) also suggest higher integration during initial category learning
in our task, but orchestrated by the basal ganglia and related subcortical
structures. The results both support and qualify this hypothesis: learn-
ing is predicted by a form of integration that accounts for the network's
community structure. Higher accuracy was predicted by higher integra-
tion within and across network modules - as measured by the intra-
modular strength and participation coefficient, respectively. These
changes at the meso-scale of network communities were accompanied
by lower integration (strength) and higher segregation (clustering) at
the global scale of the whole network.

Nodes with a profile increasingly similar to connector hubs predict-
ed higher accuracy. Connector hubs allow communication between
functionally segregated network communities and their presence in
prefrontal cortex has been previously linked to performance of a simple
visually guided finger-tapping task (Bassett et al., 2006). It is intuitively
plausible that the increased presence of connector hubs enables flexible
reconfiguration of brain networks, thereby facilitating learning (Bassett
etal, 2013b, 2011, 2015). Here, an increase in the “connector hubness”
of nodes in subcortical areas was a particularly good predictor of task
performance, which is consistent with the nature of our task (Ashby
and Ennis, 2006; see Ashby and Spiering, 2004).

Taking speed of correct responding as an index of automaticity, we
found that automaticity is related to increased segregation, as indexed
by the clustering coefficient, a relationship that was particularly strong
in subcortical areas. This supports our hypothesis that the basal ganglia
and related subcortical areas are involved in integrative processing
early in category learning but are released from such function with
overtraining. Previous findings of decrements in dynamic centrality
with learning of a motor task have also been interpreted as arising from
a lower requirement for integration as a skill becomes automated
(Mantzaris et al., 2013). Furthermore, the rate of decreased integration
between motor and visual modules in a finger sequencing task (in
which participants generated responses to sequences of visual stimuli
corresponding to fingers of their right hand) practiced over 6 weeks pre-
dicted individual differences in learning, further highlighting the utility of
network segregation for automatic processing (Bassett et al., 2015).

Although automaticity learning was also predicted by an increase
in strength in many ROIs, this effect appeared stronger in visual and
motor areas than in subcortical areas (Fig. 5B). Strength is a measure
of the connectivity of pairs of regions, which is expected to increase in
cortical areas as automaticity develops. On the other hand, integration
involving more than two regions, as measured by betweenness
centrality, did decrease with automaticity.

Focal points of functional network reconfiguration are task-specific

Several recent papers have shown that multimodal association
areas—including frontal, temporal, and parietal cortex—are focal points
of functional network reconfiguration during learning and the perfor-
mance of cognitive tasks (Bassett et al., 2015, 2013b, 2011, 2009,
2006; Mantzaris et al., 2013; Cole et al., 2013; Ekman et al., 2012;
Fornito et al., 2012; Braun et al., 2015). Here, the network topology of
frontal and medial temporal nodes played only a minor role in
explaining behavioral changes, whereas subcortical areas played a
major role. One likely explanation for this departure from previous
studies is that they used tasks that engage explicit processes, such as
working memory (Bassett et al., 2009; Braun et al., 2015), preparatory
attention (Ekman et al., 2012), memory recollection (Fornito et al.,
2012), and rule use (Cole et al., 2013). On the other hand, we used a cat-
egorization task known to engage implicit procedural learning (Ashby

et al., 2003; Maddox et al., 2004) and mediated by the basal ganglia
(Ashby and Ennis, 2006; Ashby and Spiering, 2004).

It is unlikely that a single set of brain regions drives functional
network reconfigurations across all tasks. However, some general prin-
ciples might still be at work. For example, areas with structural connec-
tions to a variety of other areas across the brain are more likely to play a
role in integrative function (Sporns, 2014; Sporns, 2013; van den
Heuvel and Sporns, 2013; Gu et al., 2015). Both multimodal association
areas in cortex and the basal ganglia fit this description. The basal
ganglia in particular receive projections from almost all of cortex and
project back to it through the thalamus (Haber and Johnson Gdowski,
2004), which might explain their strong functional connections to key
cortical hubs (Zuo et al., 2012) and their role in learning and cognitive
function (e.g., Ashby and Ennis, 2006; Ding and Gold, 2013; Doyon
et al., 2009; Packard and Knowlton, 2002). Indeed, recent theoretical
work underscores the predicted relationship between a brain region's
pattern of structural connectivity and the role that brain region plays
in controlling or constraining brain dynamics leading to adaptive
function such as learning (Gu et al., 2015).

Relation to previous analyses of this dataset

Two other analyses of the data used here have been previously re-
ported, one involving traditional univariate statistics (Waldschmidt
and Ashby, 2011) and one involving multivoxel pattern analyses (Soto
et al,, 2013). Several results from those studies are in line with the
hypothesis that early learning of the information-integration categori-
zation task depends on the basal ganglia and associated subcortical
areas, whereas extended practice is associated with transfer of
control from the basal ganglia to cortex, as predicted by the neuro-
computational theory of Ashby and colleagues (Ashby et al., 2007). Uni-
variate analyses (Waldschmidt and Ashby, 2011) found that activity in
putamen correlated with task performance early in training. After ex-
tensive categorization training, putamen activity was no longer related
to performance in the task, the only areas in which activity correlated
with accuracy were cortical (SMA and pre-SMA). There was no evidence
that the basal ganglia made a meaningful contribution to categorization
performance after overtraining.

Previous multivariate analyses of the data (Soto et al., 2013) com-
pared patterns of activity in categorization-related ROIs across three
different categorization tasks, including the information-integration
task studied here. The results of those analyses revealed to what
extent the activity patterns observed in the information-integration
task were similar or dissimilar to those observed in rule-based tasks.
The results suggested that, early in training, the information-
integration task could be distinguished from rule-based tasks based on
activity patterns from a variety of motor and subcortical areas, including
caudate and thalamus. This is in line with the hypothesis that early
category learning depends on different neural mechanisms for
information-integration and rule-based tasks. After extensive training,
the information-integration task could be distinguished from rule-
based tasks based on activity patterns from only a handful of regions.
That is, patterns across the brain became increasingly similar across
tasks after overtraining, which is what would be expected if the devel-
opment of automaticity in such tasks involves gradual transfer of con-
trol from originally dissociable learning systems to common sensory-
motor cortical networks.

As discussed previously, the present results are also in line with the
hypothesis of an early engagement of basal ganglia and related subcor-
tical structures in category learning, which decreases with extensive
training in a categorization task. However, the present study also
extends beyond the scope of previous analyses in two main ways.
First, this is the first study to directly compare how accuracy and re-
sponse times are related to the same measures of neural function across
categorization training, taking advantage of the fact that changes in
these two behavioral measures of performance should accompany
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different learning processes according to the neurocomputational theo-
ry of Ashby and colleagues (Ashby et al., 2007). Second, the present
study focused on characterizing the pattern of connectivity of small re-
gions in the brain network related to categorization, instead of charac-
terizing the pattern of localized activity in such regions, as previous
studies did. Our results suggest that subcortical areas not only show
stronger and more unique patterns of activity during early category
learning, but that changes in their topological properties are predictive
of changes in task accuracy. On the other hand, as predicted by the
neurocomputational theory, the same topological properties are much
less informative about changes in speed of performance throughout
training.

Methodological considerations

Although the number of participants in our study is small, the num-
ber of scans is much larger than is common in traditional fMRI studies:
each participant was trained in the same task for 20 days, and scanned
during 4 of these days. This large longitudinal sample size is critical for
regression analysis used to understand how changes in network topol-
ogy could explain changes in behavior across training. Indeed, each par-
ticipant completed more than 11,520 categorization trials and the
modeling was based on 24 blocks of data (i.e., 80 trials each) per partic-
ipant. In total, each model was fit to 237 data points. As we discuss more
extensively in the supplementary material, both this larger sample of
data points and the number of participants is above the level recom-
mended in the multilevel regression literature. Furthermore, previous
work in the field of multilevel regression has shown that the main effect
of a small number of participants should be a loss of power in statistical
tests, but estimates from regression analyses should have good statisti-
cal properties. Thus, the statistically significant results reported here
should be generalizable and the regression estimates precise, although
we may have missed true effects due to a lack of statistical power.

Computation of intra-modular strength and participation coefficient
depends on how the network is partitioned into modules, and thus it
could be affected by such partition. The intra-modular strength is stan-
dardized to reflect the strength distribution within each module; it re-
flects the strength of connections of a node in relation to all nodes in
the same module. Changes in module size should not affect this mea-
sure. Changes in the node's module affiliation could. Thus, our interpre-
tation of results related to intra-modular strength should be informed
by the fact that an increase or decrease in the measure could be due to
a change in module affiliation instead or a change in the connectivity
of the node within the same module. In either case, though, an increase
in intra-modular strength can be interpreted as an increase in the
“hubness” of the node relative to its own module.

The situation is more complicated for the participation coefficient.
The scale of this measure changes with the number of modules in the
network. For example, the maximum value (the case in which connec-
tion strength is evenly distributed across modules) for a network with
two modules is 0.5, whereas for a network with 5 modules is 0.8.
Thus, the number of modules affects the value of this measure indepen-
dently of the node's connectivity. If a particular node does not change its
connectivity to other nodes at all, but the number of modules increases,
then the PC of that node should increase. Although the results of our
analysis of modularity suggest that the number of modules was relative-
ly stable (between 4 and 5 on average, without statistically significant
changes across blocks; see supplementary material), we should note
that it is possible that what predicts increases in accuracy is not a higher
connectivity across modules, but a larger number of modules. Note,
however, that a change in global network properties like this could
not explain the distribution of regression weights across ROIs depicted
in Fig. 10, where increments in participation coefficient were particular-
ly predictive of changes in accuracy in subcortical areas (a result con-
firmed by a permutation test). Still, we performed a regression
analysis (see supplementary material) to determine whether variation

in the number of modules across blocks and participants could explain
changes in accuracy or response times. The resulting regression models
could not predict either behavioral measure better than a null model, in-
dicating that it is unlikely that the results shown in Fig. 10 could be the
result of changes of scale in the participation coefficient due to changes
in the number of modules in the network.

While a larger graph statistic battery may be relevant for some scien-
tific questions (Ekman et al., 2012), here we use a small number of mea-
sures to (i) reduce collinearity issues (Dormann et al., 2013; see
supplementary material) and (ii) maximize interpretability of the rela-
tionship between graph measures and behavior, as revealed by regres-
sion coefficients.

Here we study networks built using functional connectivity, which is
ameasure of the statistical association between signals in pairs of nodes.
Measures of functional connectivity may or may not reflect the strength
of information transmission between two areas, as the former can
change without changes in the latter (Friston, 2011; Horwitz, 2003).
However, the interpretation of our results does not change significantly
when we take these issues into consideration. For example, correlated
signals suggest that two areas, if not directly connected, at least process
similar information or process information in a similar way. Network
measures can be interpreted in terms of integration and segregation of
function, and integration may be more costly than segregation if it uti-
lizes redundant information processing. On the other hand, an area
may change functional connectivity without any underlying change in
effective connectivity (Friston, 2011), meaning that localization of an ef-
fect in a particular ROI suggests, but does not imply, localization of the
underlying mechanisms in that ROL Furthermore, relations between
functional connectivity changes and behavioral changes should not be
interpreted as causal, since both are likely the product of latent changes
in effective connectivity.

Finally, we assumed that changes in functional network measures
across training were related to learning of the categorization task and
not to other changes occurring throughout the study such as habitua-
tion to the scanner environment. Two features of our results support
this assumption: (i) we found a dissociation between graph statistics
that could predict changes in response time and changes in accuracy,
and (ii) we confirmed the prediction that subcortical areas should be
more important to predict accuracy changes than response time chang-
es. At least two independent confounds are required to explain these re-
sults, which should follow very specific trends throughout training, and
have different effects on different network measures and brain areas.

Conclusions

Using network science and multilevel regression, we showed that
changes in the connectivity of fine-scale regions can predict behavioral
changes during training in a visual categorization task. As expected, we
found that changes in the connectivity of subcortical areas were partic-
ularly critical for predicting changes in accuracy reflecting initial
learning. Such initial learning was predicted by increasingly efficient in-
tegrative processing in subcortical areas, with higher functional special-
ization, more efficient integration across modules, but at a lower cost in
terms of redundancy of information processing. Changes in the speed of
correct responding, reflecting the development of automaticity, were
predicted by lower clustering (particularly in subcortical areas),
higher strength (highest in cortical areas), and higher betweenness
centrality.

Our work shows that two different recent developments in
computational cognitive neuroscience—neurocomputational theories
of category learning (Ashby et al., 2007; Ashby et al., 1998) and the
application of network science to understanding brain connectivity
(Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Sporns,
2014)—can be used in a complementary fashion to reach a better under-
standing of brain function. Neurocomputational models of category
learning and automaticity (Ashby et al., 2007) make predictions about
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changes in functional connectivity between a few specific brain regions,
some of which have been supported by previous work (DeGutis and
D’Esposito, 2009; Seger et al., 2010). Here, applying network science
allowed us to explore global changes in functional connectivity as a
function of learning, as opposed to changes in specific connections.
The measures afforded by graph theory allowed us to study the distrib-
uted shifts in segregation and integration that accompany category
learning and development of automaticity, providing a more complete
characterization of changes in functional networks than is possible in
the study of single connections. On the other hand, neurocomputational
theories of categorization provided novel hypotheses about what brain
areas should be particularly important focal points of functional net-
work reconfiguration during learning, which have been supported by
our results.
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