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Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based
and information-integration categorization tasks. With the development of automaticity, categorization be-
havior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The
present study uses multi-voxel pattern analysis to directly compare the development of automaticity in dif-
ferent categorization tasks. Each of the three groups of participants received extensive training in a different
categorization task: either an information-integration task, or one of two rule-based tasks. Four training ses-
sions were performed inside an MRI scanner. Three different analyses were performed on the imaging data
from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs
with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs
with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring
(1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared
across tasks. The results showed that common patterns of activation were present in motor areas and basal
ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical
and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of
representational similarity between brain regions became increasingly similar across tasks with the develop-
ment of automaticity.
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Introduction

The ability to group objects and other stimuli into classes, despite
their perceptual dissimilarity, is extremely helpful for organizing the
environment and adaptively responding to its demands. For this reason,
categorization has attracted much attention as a subject of behavioral
and neurobiological research. Research in the neuroscience of human
category-learning has shown that a variety of areas are recruited during
learning and performance of categorization tasks, including visual, pre-
frontal, parietal, medial temporal and motor cortices, as well as the
basal ganglia (for reviews, see Ashby and Maddox, 2005; Seger and
Miller, 2010).

Multiple systems of category learning

A body of behavioral and neurobiological evidence suggests that the
brain areas associated with categorization are organized in relatively
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separate category-learning systems and that different categorization
tasks engage the systems differently (Ashby and Maddox, 2005;
Nomura and Reber, 2008; Poldrack and Foerde, 2008). Information-
integration (II) tasks, which require the integration of information
from two or more stimulus components at a pre-decisional stage, re-
cruit a procedural-learning system that relies on feedback-based learn-
ing of associations between stimuli and responses. An example is
shown in the top-right panel of Fig. 1, where information about the ori-
entation and width of stripes must be integrated to categorize the stim-
uli correctly. Rule-based (RB) tasks, in which the optimal strategy is
easy to verbalize and can be learned through a logical reasoning pro-
cess, recruit a declarative-learning system that is based on explicit rea-
soning and hypothesis testing. An example is shown in the bottom-left
panel of Fig. 1, where the simple verbal rule “respond A if the stripes are
narrow and B if the stripes are wide” can solve the task.

The COVIS model of category learning (Ashby et al., 1998; for recent
versions of the model, see Ashby et al., 2011; Ashby and Valentin, 2005)
is a formal description of these two learning systems and the brain re-
gions subserving each of them. Learning of sensory-motor associations
in the COVIS procedural system is implemented in the synapses from
visual sensory neurons onto medium spiny neurons in the striatum,
the input structure of the basal ganglia. The output of the basal ganglia
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Fig. 1. Information about the tasks and stimuli used in the present study. The top-left panel shows an example stimulus. The other three panels show the category structures in each
of the tasks. Dashed lines represent optimal bounds separating the two categories and different colors represent different clusters of stimuli revealed by a k-means cluster analysis

(see Neuroimaging analysis section).

controls motor responses through its influence on premotor areas,
via the ventral lateral and ventral anterior thalamic nuclei. Learning
through explicit reasoning and hypothesis testing in the COVIS declara-
tive system is implemented in a network of frontal, medial temporal
and basal ganglia areas. Candidate rules are maintained in working
memory representations in the lateral PFC, via a series of reverberating
loops through the medial dorsal nucleus of the thalamus. These rules
are selected from among all available rules via a network that includes
the anterior cingulate cortex. If evidence is accumulated that a particu-
lar rule does not lead to accurate performance, the rule is switched by
reducing attention to it via frontal input to the head of the caudate nu-
cleus, which ultimately inhibits the thalamic-PFC loops in charge of
working memory maintenance.

Many behavioral studies have found dissociable effects of experi-
mental manipulations in RB and I tasks. For example, switching the lo-
cations of response keys after categorization learning interferes with
performance in II tasks, but not with performance in RB tasks (Ashby
et al,, 2003; Maddox et al., 2004), suggesting that category learning is
tied to specific motor responses only in the former. Learning in II tasks
is also disrupted if feedback is absent (Ashby et al., 1999), presented be-
fore the stimulus (Ashby et al., 2002) or delayed by a few seconds
(Maddox et al., 2003). The same manipulations have smaller or no
effects in RB tasks. On the other hand, asking participants to perform a
simultaneous task during category learning, which demands working
memory and attention, interferes more with RB tasks than with II
tasks (Waldron and Ashby, 2001). Similarly, dual-task interference
has been found for declarative, but not implicit knowledge about a
probabilistic categorization task (Foerde et al., 2007).

Neurobiological studies also suggest that the brain areas involved in
category learning differ for Il and RB tasks. For example, in the only fMRI
study that has directly contrasted task-related activity in Il and RB tasks,
Nomura et al. (2007) found that activity in the hippocampus, anterior
cingulate cortex, middle frontal gyrus and body of the caudate all corre-
lated with successful performance in the RB task, whereas only activity
in the body and tail of the caudate correlated with successful perfor-
mance in the II task. Direct comparison of task-related activity between
the tasks in several regions of interest (ROIs) revealed higher activity for
the RB than the II task in the hippocampus, and higher activity for the II
than the RB task in the caudate, suggesting a dissociation between a
hippocampal-based declarative system and a basal ganglia-based pro-
cedural system in category learning.

Several other studies have found results that are generally in agree-
ment with COVIS. During the early stages of learning of RB categoriza-
tion tasks, accuracy is found to be correlated with activation in the
hippocampus, head of the caudate, dorsolateral prefrontal cortex, ven-
trolateral prefrontal cortex, and posterior parietal cortex (Filoteo et al,
2005; Helie et al,, 2010a; Seger and Cincotta, 2006). On the other
hand, activity during learning of II tasks increases in the body and tail
of the caudate, and in the putamen (Cincotta and Seger, 2007;
Waldschmidt and Ashby, 2011).

Other studies have used a “weather prediction” categorization
task, in which feedback about category membership is usually proba-
bilistic. Participants can use a variety of strategies to achieve good
performance in this task (Gluck et al., 2002) and neuroimaging stud-
ies suggest that dissociable learning systems might underlie such
strategies (for a review, see Poldrack and Foerde, 2008). For example,
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accuracy in the weather prediction task correlates with activity in the
hippocampus in normal conditions and with activity in the striatum
when a secondary task must be simultaneously performed (Foerde
et al., 2006). In addition, activity in the hippocampus and the basal
ganglia has been found to be negatively correlated across participants
and across learning stages in the weather prediction task (Poldrack
et al., 2001). Using a deterministic version of this task, Seger et al.
(2011) found that activity in the head of the caudate was higher in
trials in which participants indicated that they implicitly or automat-
ically knew the correct response, whereas activation in the hippo-
campus was related to trials in which participants indicated that
they had an episodic memory of the stimulus and its correct response.

In sum, the results of both behavioral and neuroimaging studies
are in line with the idea that dissociable systems might underlie cat-
egory learning.

Automaticity in categorization

Unlike early learning performance, other evidence suggests that
similar mechanisms might come to control performance after catego-
ries have been overlearned and automatic categorization behavior has
developed (Ashby and Crossley, 2012). For instance, behavioral studies
of early category learning have found button-switch interference in II
tasks, but not in RB tasks, and dual-task interference in RB tasks, but
not in II tasks. After the development of automatic categorization
behavior, button-switch interference is found in both types of tasks,
whereas dual-task interference is found in neither (Helie et al.,
2010b). These results are in line with recent models of automaticity in
I (SPEED: Ashby et al., 2007) and RB (Helie and Ashby, 2009) categori-
zation, which propose that responses are selected in automatic catego-
rization through direct projections from sensory to motor cortex,
regardless of the type of categorization task that has been trained.

This hypothesis is supported by several neuroimaging studies. First,
overtraining in a face categorization task is related to an increase in
coherence between the right fusiform face area and premotor cortex
(DeGutis and D'Esposito, 2009). Although this study did not show
differences in task-related activity between well-practiced and novel
tasks in any brain region, more recent studies have reported such
differences. Second, Helie et al. (2010a) trained subjects in two RB
tasks for almost 12,000 trials distributed over 20 sessions, with four of
these sessions (1, 4, 10 and 20) performed in an MRI scanner. They
found that the correlation between accuracy and task-related activity
increased throughout training in ventrolateral prefrontal, motor, and
premotor cortices, whereas the same correlation decreased in hippo-
campus, basal ganglia and thalamic nuclei. These results suggest that
the hippocampus and subcortical areas have a role in early RB category
learning, whereas automatic RB categorization is mostly supported by
premotor and prefrontal cortical areas. Finally, Waldschmidt and
Ashby (2011) conducted a similar study in which participants practiced
a I task for 20 sessions and were scanned on four different occasions
(sessions 2,4, 10 and 20). They found an increase in task-related activity
for motor and premotor regions across training. Among subcortical
areas, only the putamen showed significant task-related activity
throughout training. The correlation between such activity and perfor-
mance decreased with the development of automaticity.

In sum, a body of behavioral and neuroimaging data supports a
model of categorization in which early learning of RB and II tasks
engages different systems, each involving several cortical and subcor-
tical areas, whereas automatic performance in both tasks engages
mostly cortical motor and premotor areas.

Open questions and the current study
There are still open questions regarding the neural substrates of

categorization. For example, neuroimaging studies of early category
learning have not found a completely clear-cut dissociation between

systems in RB and II tasks. Areas thought to be involved in declarative
learning, such as the hippocampus and the head of the caudate, have
been found to be active during learning of I tasks (Cincotta and Seger,
2007), whereas areas thought to be involved in procedural learning,
such as the putamen and body and tail of the caudate, have been
found to be active during learning of RB tasks (Seger and Cincotta,
2006; see also Ell et al., 2006). One possibility is that these areas
have a role in processes that are used across different tasks, such as
feedback processing for the head of the caudate (Cincotta and Seger,
2007; Seger and Cincotta, 2005).

However, part of the problem might be that these different studies
have used different procedures. Most neuroimaging studies in the liter-
ature have not directly compared brain activity during Il and RB tasks,
with the exception of Nomura et al. (2007). Furthermore, most studies
have not controlled for the possibility that participants could use explic-
it strategies in II tasks or procedural strategies in RB tasks. Specifically,
COVIS predicts that people show a bias to try explicit rules early in
any categorization task (Ashby et al., 1998). Thus, a comparison be-
tween RB and II tasks should consider only those trials during Il learning
in which rules are less likely to be used by the participants.

Similarly, no previous studies have directly compared Il and RB tasks
across the development of automaticity. One previous behavioral study
has shown similar patterns of behavior in Il and RB tasks after the devel-
opment of automaticity (Helie et al., 2010b), but it is not clear whether
this behavioral similarity is accompanied by similarity in patterns of
task-related brain activity.

Here, we directly compare brain activation patterns in Il and RB
tasks throughout the development of automatic categorization using
multi-voxel pattern analysis (MVPA). Imaging data from three different
groups of participants were analyzed. Each group was scanned while
categorizing circular sine-wave gratings that varied in the width and
orientation of the dark and light bars. The structure of the categorization
task varied across groups. The II task (see top-right panel in Fig. 1) re-
quired integration of information about width and orientation. The Sim-
ple RB task (see bottom-left panel in Fig. 1) required attending to a
single stimulus dimension and classifying stimuli according to their po-
sition relative to a single category bound. The Disjunctive RB task (see
bottom-right panel in Fig. 1) required attending to a single stimulus di-
mension as well, but classifying stimuli according to their position rela-
tive to two category bounds.

Two different RB tasks were included in this study because each
matched a different feature of the II task. The Simple RB task has a sim-
ilar structure to that of the Il task, with both involving a single category
boundary. However, results from several previous studies strongly
suggest that the II task should be much more difficult for people to
master than the Simple RB task (e.g., Ashby et al, 2002, 2003;
Maddox et al., 2003). The Disjunctive RB task was included with the
expectation that it would match better the II task for difficulty. How-
ever, this task had a different structure from the other two tasks, in-
volving learning of two category boundaries instead of just one.

To summarize, previous evidence suggests that the two RB tasks
are likely to be learned through an explicit rule, whereas the II task
is likely to be learned through an implicit strategy. The Simple RB
task is expected to be easy to learn, whereas the Disjunctive RB and
Il tasks should be more difficult to learn. After category learning is
achieved, overtraining in all three tasks should ultimately lead to au-
tomatic categorization behavior.

Subjects were trained in the three tasks for 20 sessions, with 4 ses-
sions conducted inside an MRI scanner. Importantly, the first scan-
ning session was the first training session in both RB tasks, but it
was the second training session in the II task. Thus, it is unlikely
that subjects in the II task would have been trying explicit rules by
the time of scanning.

Three analyses were performed. These analyses are novel in two
important ways: they focus on comparisons across tasks instead of
on activity in each particular task and they are multivariate instead
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of univariate. All analyses focused on ROIs thought to be involved in
categorization on the basis of previous research and theory.

In the unique patterns analysis, activation patterns from a particular
brain region were classified according to the task performed by the sub-
ject. Accurate classification of these patterns reveals information in the
region that is unique to one of the tasks, thus helping to discriminate
among them. In the common patterns analysis, activation patterns
from a particular brain region were classified according to the category
of the stimuli producing them. The classifier was trained with patterns
from participants who completed one categorization task and tested
with patterns from participants who completed a different task. Accu-
rate classification of these patterns reveals category-relevant informa-
tion in the region that is common across the tasks performed by the
two groups. In the classification similarity analysis, activation patterns
from a particular brain region were again classified according to the cat-
egory of the stimuli producing them. Here, however, the classifier was
trained and tested with patterns from the same group. Which patterns
the classifier correctly and incorrectly classifies reveals information
about the category representations present in a particular brain region.
Similar representations in two different regions should lead to similar
vectors of hits and errors made by the classifier. The similarity of
these confusion vectors was computed for all pairs of regions consid-
ered. Because the resulting matrices of representational similarities
were indexed by region, they could be compared across groups. In con-
trast, the original patterns cannot be compared in this way, because
they are indexed by specific stimuli and categories, which differ across
tasks (Kriegeskorte et al., 2008).

Materials and methods
Sample

Twenty-four healthy undergraduate students from the University of
California, Santa Barbara voluntarily participated in this study in ex-
change for course credit or a monetary compensation. Eight participants
trained in each of the three tasks depicted in Fig. 1 and provided data for
the analyses. All participants gave their written informed consent to
participate in the study. The institutional review board of the University
of California, Santa Barbara, approved all procedures in the study.

Standard GLM-based analyses of the imaging data acquired on
this sample have been previously reported (Helie et al., 2010a;
Waldschmidt and Ashby, 2011). The data from three of the 11 partic-
ipants in the original Il group were not included here because some
data needed to complete all analyses was missing.

Stimuli and apparatus

The stimuli were circular sine-wave gratings of constant contrast
and size that varied in orientation from 20° to 110° and in frequency
from 0.25 to 3.58 cpd. Fig. 1 shows an example stimulus together
with the category structures used to train participants in each of the
tasks. Stimuli were presented and responses were recorded using
MATLAB augmented with the Psychophysics Toolbox (Brainard,
1997), running on a Macintosh computer. For a more detailed de-
scription of the stimuli and apparatus, see Helie et al. (2010b).

Neuroimaging

A rapid event-related fMRI procedure was used. Images were
obtained using a 3 T Siemens TIM Trio MRI scanner at the University
of California, Santa Barbara Brain Imaging Center. The scanner was
equipped with an 8-channel phased array head coil. Cushions were
placed around the head to minimize head motion. A localizer, a
GRE field mapping (3 mm thick; FOV: 192 mm; voxel: 3x3x3 mm;
FA=60°), and a T1-flash (TR=15 ms; TE=4.2 ms; FA=20°; 192 sag-
ittal slices 3-D acquisition; 0.89 mm thick; FOV: 220 mm; voxel:

0.9%x0.9x0.9 mm; 256 x 256 matrix) were obtained at the beginning
of each scanning session, and an additional GRE field-mapping scan
was acquired at the end of each scanning session. Functional runs
used a T2*-weighted single shot gradient echo, echo-planar sequence
sensitive to BOLD contrast (TR: 2000 ms; TE: 30 ms; FA: 90°;, FOV:
192 mm; voxel: 3x3x3 mm) with generalized auto calibrating
partially parallel acquisitions (GRAPPA). Each scanning session lasted
approximately 90 min.

Neuroimaging analysis

Preprocessing was conducted using FEAT (fMRI Expert Analysis
Tool) version 5.98, part of FSL (www.fmrib.ox.ac.uk/fsl). Volumes
from all the blocks in a single session were concatenated into a single
series. Preprocessing included motion correction using MCFLIRT
(Jenkinson et al, 2002), slice timing correction (via Fourier time-
series phase-shifting), BET brain extraction, and a high pass filter with
a cutoff of 100 s. The data were not spatially smoothed during prepro-
cessing. Each functional scan was registered to the corresponding struc-
tural scan using linear registration (FLIRT: Jenkinson et al., 2002;
Jenkinson and Smith, 2001). Each structural scan was registered to the
MNI152-T1-2 mm standard brain using nonlinear registration (FNIRT:
Anderson et al., 2007). The resulting linear and nonlinear transforma-
tions, and their inverse transformations, were jointly used to transform
volumes from subject space to standard space and vice-versa (see
below). All transformations used nearest-neighbor interpolation.

The rest of the analyses were performed using MATLAB (The
MathWorks, Natick, MA, USA). The first step in preparing the pre-
processed data for MVPA was to generate 40 maps of t values
(t-maps) for each scanning block and each subject in the experiment.
Each individual t-map represented activity related to the correct clas-
sification of a small cluster of stimuli. Estimating parameters for small
stimulus clusters had the advantage of combining data from several
trials in a session to achieve more reliable estimates. This procedure
was possible because the 480 stimuli presented to participants in
each task were highly similar and all fell within a small region of
the stimulus space. For each category within each task, all 240
two-dimensional vectors describing stimuli in physical space were
used as input to a k-means clustering analysis. This procedure found
the 20 clusters that minimized the sum of Euclidean distances from
each data point to its corresponding cluster centroid. The analysis
was repeated 3000 times, each with a different randomly selected
starting position for the cluster centroids, and the result with the low-
est sum of Euclidean distances was retained. The resulting clusters are
represented by circles of different colors in Fig. 1.

A modification of the finite BOLD response (FBR) method proposed
by Ollinger et al. (2001) was used to obtain a t-map associated to each
of the stimulus clusters. The FBR method avoids assumptions about
the HRF that are inherent to parametric estimation methods and it is
more successful than the latter in unmixing the responses to temporally
adjacent events in event-related designs (Turner et al., 2012). For each
stimulus cluster, a separate FBR analysis was run which included eight
parameters for each of four event types: the target cluster, crosshair,
feedback, and all stimulus presentations excluding those of the target
stimulus cluster. This iterative estimation method has the advantage
of reducing collinearity among regressors, which produces more reli-
able parameter estimates that outperform other estimation methods
when used for MVPA (Mumford et al., 2012; Turner et al., 2012). A con-
trast was created by taking the parameter estimates representing the
peak of activity related to the target cluster (parameters 2-5) and
subtracting from these the estimates representing the early (parameter
1) and late (parameters 6, 7, and 8) components of the activity related
to the target cluster. The resulting t-maps were then submitted to clas-
sification analyses. Such vectors of t values have been found to produce
better classifier performance than vectors of raw beta estimates (Misaki
et al.,, 2010).
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The classification analyses focused on a set of 19 anatomical ROIs. In-
formation about these ROIs is summarized in Table 1, including the ab-
breviations that will be used to refer to each ROI throughout the rest of
this paper. The ROIs included in our analyses have been found to be in-
volved in visual categorization by several previous studies (see
Introduction section) and/or have been proposed to be involved in cat-
egorization learning and automaticity by neurobiologically detailed
theories of such cognitive abilities (COVIS: Ashby et al., 1998; SPEED:
Ashby et al., 2007). Table 1 includes information about the hypothe-
sized role of each ROI in categorization, together with references
containing a more in-depth discussion of such functional roles and the
empirical evidence for them.

The anatomical boundaries of each ROI were created in MNI152-
T1-2 mm standard space using the Harvard-Oxford Cortical Structural
Atlas, the Harvard-Oxford Subcortical Structural Atlas, or the Oxford
Thalamic Connectivity Probability Atlas (all three included in FSL). The
anterior cingulate cortex was divided into mACC and pACC based on
structural landmarks (Vogt et al., 2004). The premotor cortex was divid-
ed in regions (pre-SMA, SMA, vPM and dPM) as defined by Picard and
Strick (2001). The dIPFC was extracted following the definition in
Petrides and Pandya (2004). The CD-hd was extracted according to
Nolte (2008) and the CD-bt was obtained by extracting CD-hd from
the caudate mask. Table 1 includes a column with information about
the size of each ROL.

Three separate classification analyses were performed on the data
from each group. The goal of the common patterns analysis was to de-
termine which ROIs responded similarly in different categorization
tasks. Because this analysis required presenting data from different
subjects to the classifier, the original t-maps were transformed from
subject space to standard space using FLIRT and FNIRT (see above)
and the analysis was performed in this common space. A support-
vector machine (SVM) with a linear kernel was trained to determine
the category to which a cluster belonged from the t-values in a partic-
ular ROL The classifier was trained with all the data from one task
(the t-values corresponding to each of the 40 clusters and each of
the 8 subjects) and then tested with all the data from a second task.
The analysis was repeated twice for each pair of tasks (i.e., RB1/RB2,
RB1/II, RB2/1I), switching across repetitions the dataset used for train-
ing and testing. The average accuracy for both repetitions is reported.
The analysis was repeated for each pair of tasks (3 in total), each ROI
(19 in total), and each scanning session (4 in total).

The goal of the unique patterns analysis was to determine which ROIs
carry patterns of activation that are different across different categoriza-
tion tasks. Because this analysis required presenting data from different
subjects to the classifier, the original t-maps were transformed from

subject space to standard space using FLIRT and FNIRT (see above)
and the analysis was performed in this common space. An SVM with a
linear kernel was trained with data from two out of the three groups
(RB1 and RB2, RB1 and II, or RB2 and II), to determine the task in
which a participant was engaged from a vector of t-values. A 64-fold
cross-validation method was used. For each fold, all vectors from one
subject of each group were selected as testing data, and the rest of the
data were used to train the classifier to determine the experimental
task to which each vector belonged. Mean accuracy with the test vectors
is reported. The analysis was repeated for each pair of tasks (3 in total),
each ROI (19 in total), and each scanning session (4 in total).
Permutation tests were carried out to evaluate the statistical signif-
icance of each of the obtained classification accuracies. Class labels were
randomly permuted 500 times and the full analysis was performed with
these permuted labels. Empirical accuracy distributions were built from
the results and the probability of observing a mean accuracy equal to or
larger than the accuracy actually observed was computed in each case.
These p-values were corrected for multiple comparisons by holding
the false-discovery rate at g=5% (Benjamini and Hochberg, 1995).
Finally, the goal of the classification similarity analysis was to eval-
uate the similarity of category representations in different ROIs with-
in each task. Because this analysis required training and testing the
classifier with data from a single participant at a time, the original
untransformed t-maps were used. The ROI masks were transformed
from standard space to subject space using FNIRT and FLIRT (see
above). In a separate analysis for each group, a classifier was trained
to decode the category to which each cluster-related vector belonged.
For each ROI and each subject, the 40 cluster-related vectors of
t-values were used to train a linear SVM using a leave-one-out
cross-validation procedure. This resulted in a vector of 40 binary
values for each subject, representing whether the classifier could
correctly classify each one of the cluster-related vectors when it was
used in the test. These vectors were averaged across subjects to ob-
tain a single confusion vector for each ROI, which represents the
level to which activity patterns within that ROI could be used to accu-
rately decode the category of a particular cluster. If, across subjects,
two different ROIs encoded category information in a similar way,
then a classifier trained with patterns from those ROIs should tend
to correctly classify the same clusters, and their confusion vectors
should be correlated. The correlation between confusion vectors of
each pair of ROIs was computed and subtracted from 1 to get a repre-
sentational dissimilarity matrix (RDM). Because these RDMs are
indexed by ROI, it is possible to compare them across different tasks
by computing their correlation, which represents how similar the
patterns of confusion similarities are across tasks. Following the

Table 1

Information about the ROIs included in this study.
ROI Abbreviation Size (2x2x2 mm voxels) Reason to be included References
Putamen PUT 3939 COVIS: Response learning and selection Ashby et al. (2007

Body and tail of caudate CD-bt 1330 COVIS: Response learning and selection
Head of the caudate CD-hd 2063 COVIS: Rule switching

Globus pallidus GP 2337

Motor thalamus va/vITH 2870 COVIS: Response selection
Frontal thalamus mdTH 4127

Primary motor M1 29,115 Motor movement control

Dorsal premotor dPM 15,460 SPEED: Motor representations
Ventral premotor vPM 4215 SPEED: Motor representations
Supplementary motor SMA 3752 SPEED: Motor representations
Posterior ACC pACC 2143 SPEED: Motor representations
Primary visual Vi 16,378 Visual input to cortex
Extrastriate cortex ESC 22,607 COVIS: Visual representations
Inferotemporal cortex  IT 16,610 COVIS: Visual representations
Ventrolateral PFC VIPFC 12,510

Dorsolateral PFC dIPFC 21,990 Evidence of rule representations
Medial ACC mACC 2485 COVIS: Rule selection

Pre SMA pre-SMA 2218

Hippocampus HPC 5837 COVIS: Rule storage

COVIS: Response selection and rule switching Ashby et al. (2005

Possible role in switching between systems

( )
Ashby et al. (1998), Ashby et al. (2011)
Ashby et al. (1998), Ashby et al. (2011)

( ), Ashby et al. (2007)
Ashby et al. (2007)

COVIS: Rule maintenance in working memory Ashby et al. (2005)

Dum and Strick (2005)
Ashby et al. (2007)

Ashby et al. (2007)

Ashby et al. (2007)

Ashby et al. (2007)

Chalupa and Werner (2004)
Ashby et al. (1998)

Ashby et al. (1998

)
COVIS: Rule maintenance in working memory Ashby et al. (2005)
(

Muhammad et al. (2006), Seger and Cincotta (2006)
Ashby et al. (1998, 2005)

Ashby and Crossley (2010b), Hikosaka and Isoda (2010)
Ashby et al. (2011)
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recommendation of Kriegeskorte et al. (2008), correlations between
RDMs were tested for significance using a permutation test, in
which the labels of one of the matrices were randomly re-ordered be-
fore computing their correlation. This process was repeated 500 times
to obtain an empirical distribution of the RDM correlation under the
null hypothesis.

Results
Behavioral results

A detailed analysis of the behavioral data from this experiment is
presented in Helie et al. (2010b), as part of a more extensive study
that included more participants and additional behavioral tests.
Several results suggest that automaticity had developed by the final
scanning session. Immediately after this session, subjects in all groups
showed a button-switch interference effect and lack of a dual-task inter-
ference effect. These two effects indicate that the participants' categori-
zation behavior by the final scanning session showed two important
features of automaticity: behavioral inflexibility and efficiency
(Shiffrin and Schneider, 1977). Furthermore, by the final scanning ses-
sion accuracy and response time (RT) had reached a near-asymptotic

level and differences among groups in these two measures had
disappeared.

These features were also observed in the learning curves of the
sub-sample of participants included in the present study. Fig. 2 shows
mean accuracies (top panel) and mean median correct RTs (bottom
panel) for each group across training sessions. Both accuracies and
RTs during the final session are very similar across groups. A one-way
ANOVA comparing mean percent correct across groups in session 20
showed no statistically significant differences, F(2, 24) =1.104, p>.1.
A one-way ANOVA comparing RTs across groups in session 19 showed
no statistically significant differences, F(2, 24) =.54, p>.1. The reason
to analyze data from session 19 instead of data from session 20 was
that RT changed importantly during scanning sessions, compared to
all other training sessions.

To evaluate at what point in training the learning curves reached
an asymptotic level, we computed an estimate of the local slope of
the curve for each subject and each training session. Scanning ses-
sions were excluded from the analysis of RTs. For each training ses-
sion, we took the data from that session, the previous session and
the following session and found the line that minimized mean
squared deviations from these three data points. At the asymptote
of the learning curve, the slope of this line should be near zero. We
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Mean Proportion Correct
o
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o
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Fig. 2. Mean accuracy (top) and mean median correct response times (bottom) across training sessions. Scanning sessions are marked at the top of each panel. Error bars represent

standard errors.
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tested whether the mean slope deviated from zero in each session
and each group through a one-sample t-test. These tests were not
corrected for multiple comparisons, to avoid decreasing the power
of the test to detect small changes in learning curves (i.e., a more con-
servative criterion for asymptotic performance).

For the accuracy learning curves, mean slopes were significantly
different from zero (a=.05) up to training session 3 in the I and Dis-
junctive RB tasks, but stopped being significantly different from zero
in session 4. Mean slopes were never significantly different from
zero in the Simple RB task. For the RT learning curves, mean slopes
were significantly different from zero up to training session 5 in the
Il and Disjunctive RB tasks, but stopped being significantly different
from zero in session 6. In the Simple RB task, mean slopes were signif-
icantly different from zero up to training session 3, but stopped being
significantly different from zero in session 5.

Thus, the behavioral results with our sample of participants mir-
rored those obtained with the full sample analyzed by Helie et al.
(2010Db): by the final scanning session, accuracy and RT had reached
near-asymptotic levels and differences among groups in these two
measures had disappeared. These results, together with the results of
the follow-up tests run by Helie et al. and summarized previously, sug-
gest that automaticity had developed by the final scanning session.

Furthermore, our analysis of the slopes of the accuracy learning
curves indicates that by the second scanning session (training session
4) category learning had reached asymptote in all groups. In sum, the
behavioral results suggest that category learning was still underway
during the first scanning session, but was finished by the second scan-
ning session. Furthermore, automaticity developed at some point
during the period starting at the second scanning session and ending
at the final scanning session. Below, we interpret the results of neuro-
imaging data taking into consideration this distinction between a
stage of category learning (scanning session 1) and a stage of automa-
ticity development (scanning sessions 2 through 4).

The behavioral data were also analyzed by fitting several classifi-
cation models to each subject's responses, where each model
implemented a different strategy that could be adopted to solve the
categorization task. A full description of the models and the results
for a larger sample of subjects can be found in Helie et al. (2010b).
In our case, the most important result concerns to what extent sub-
jects in the II task were trying explicit rules instead of an optimal
strategy by the time of their first scan. As indicated before, the main
reason to scan these subjects for the first time during the second
training session was because at this point they should have stopped
trying to learn the categorization task through explicit rules. As
expected, during the first scanning session, the data from all subjects
in the II task was fit best by a model incorporating an optimal catego-
rization strategy (with fit evaluated through the Bayesian Information
Criterion). However, as shown in Fig. 2, these subjects had not yet
fully learned the categorization task and their performance was com-
parable to that shown by subjects in the Disjunctive RB task during
their first scanning session (training session 1). A one-way ANOVA
comparing accuracy in the first scanning session across groups
found no significant differences, F(2, 24)=1.57, p>.1, suggesting
that groups were unlikely to be at different stages of category learn-
ing during their first scanning session.

Common and unique patterns analyses

Before presenting the results of the common and unique patterns
analyses, it seems necessary to comment on what exactly is possible
to learn from each. In the common patterns analysis, high classifier
accuracy for a particular ROI reveals that the activation in that ROI
is diagnostic about the category membership of each cluster of stimuli
and also that the ROI responds similarly in the different tasks. Such a
finding suggests that the ROI is mediating some basic categorization
process that is not task specific. The different categorization tasks

included in this analysis did not share similar category structures
(see Fig. 1), but they did share the same motor responses. Thus, for
example, we would expect to find high common-patterns classifier
accuracy in motor regions. On the other hand, high accuracy in
non-motor regions would be more surprising. For example, all cate-
gorization tasks might recruit some similar attentional processes,
but it seems unlikely that perceptual attention would differ for stim-
uli in different categories, especially since the categories differed
across tasks. In fact, the only factor that was identical across tasks
were the responses, so one might therefore suspect that high accu-
racy should be found only in ROIs that hold information about
motor responses.

High classifier accuracy in the unique patterns analysis suggests
that activation in that ROI is diagnostic about which task an individual
is performing and is consistent across stimuli, categories and subjects.
Even so, it is important to note that such activation may or may not be
informative about the category membership of the stimulus cluster.
In fact, because the classifier is trained to decode task- from
stimulus-related activation regardless of category membership, it is
likely that the activation patterns that are useful for this classification
are not particularly diagnostic about category membership. This is an
important difference between the unique patterns analysis and the
common patterns analysis.

The results of the common patterns analysis and the unique pat-
terns analysis are summarized in Fig. 3, in the form of several circular
diagrams, one for each combination of analysis and scanning session.
In each circle, different tasks are represented by areas of different
colors and classification results involving a pair of tasks are displayed
at the intersection of their corresponding areas. The information
displayed is a list of the ROIs for which accuracy was significantly
above chance in the corresponding classification task. For example,
the circle at the top-left corner of Fig. 3 shows the putamen in the in-
tersection of the two RB tasks, but not in the region representing the I
task. This means that, when vectors of activation from the putamen
were used as input to the classifier, accuracy was significantly above
chance in the analysis involving both RB tasks, but not in the analyses
involving the II task and either RB task. Because this circle shows re-
sults from the common patterns analysis of data from the first ses-
sion, the result suggests the presence of patterns of activation
common to both RB tasks in the putamen, but no evidence of patterns
common to the II task and either RB task in this ROL In the same dia-
gram, we see primary motor cortex listed in the intersection of all
tasks. This means that, when vectors of activation from the primary
motor cortex were input to the classifier, accuracy was significant in
all three analyses.

The information displayed in the diagrams corresponding to the
unique patterns analysis should be interpreted analogously. For ex-
ample, the circle at the top-right of Fig. 3 shows the body and tail of
the caudate in the intersection of the simple RB task and the other
two tasks, but not in the intersection between the II task and the Dis-
junctive RB task. This means that, when vectors of activation from the
body and tail of the caudate were used as input to the classifier, it was
possible to discriminate the simple RB task from the other two tasks
with significant accuracy, suggesting patterns of activation unique
to the simple RB task in this region of the caudate.

Furthermore, different font colors are used to indicate which ROIs
showed significant accuracy only in the common patterns analysis
(purple), only in the unique patterns analysis (orange), or in both
analyses (brown). For example, the top-left circle shows the puta-
men in purple font in the intersection between the two RB tasks.
This means that activation from the putamen supported high classi-
fication accuracy in the common patterns analysis, but it did not sup-
port discrimination between the tasks in the unique patterns
analysis. On the other hand, the mdTH is shown in brown in the in-
tersection between the two RB tasks, meaning that activation from
this ROI led to high accuracy in both classification analyses. Finally,
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Fig. 3. Graphical summary of the results of the common patterns and unique patterns analyses. Each circle summarizes the results of one analysis in one particular session. Tasks are
represented by colored areas inside the circle and the results of an analysis involving two tasks are presented at the intersection of the two corresponding areas. The list of ROIs
represents those brain regions for which the analysis resulted in significantly accurate classification. A purple font indicates significant accuracy only in the common patterns anal-
ysis, an orange font indicates significant accuracy only in the unique patterns analysis, and a brown font indicates significant accuracy in both analyses. The list of ROIs outside the
circles in black font indicates those brain regions for which neither of the two analyses resulted in significantly accurate classification. Abbreviations: vIPFC, ventrolateral prefrontal
cortex; dIPFC, dorsolateral prefrontal cortex; mACC and pACC, middle and posterior anterior cingulate cortex, respectively; HPC, hippocampus; SMA, supplementary motor area;
dPM and vPM, dorsal and ventral premotor cortex, respectively; M1, primary motor cortex; V1, primary visual cortex; ESC, extrastriate visual cortex; IT, inferotemporal cortex;
CD-hd, head of the caudate nucleus; CD-bt, body and tail of the caudate nucleus; GP, globus pallidus; PUT, putamen; mdTH, medial dorsal nucleus of the thalamus; va/vITH, ventral

anterior and ventral lateral nuclei of the thalamus.

the top-right circle shows the body and tail of the caudate in orange
font in the intersection between the two RB tasks. This means that
this ROI supported discrimination between the two RB tasks in the
unique patterns analysis, but not accurate performance in the com-
mon patterns analysis.

Finally, ROIs for which accuracy was not significant in either anal-
ysis for a particular session are shown outside the diagrams. Table 2
shows more detailed information about the accuracy achieved by
the classifier in the common patterns analysis, whereas Table 3
shows the detailed results for the unique patterns analysis.
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Table 2
Statistically significant (permutation test, p<.05) accuracies of the MVPA classifier in the
common patterns analysis. Different columns show results from different scanning sessions.

Session 1 Session 2 Session 3 Session 4
I task/Simple RB task
Subcortical areas
Putamen .57 .60
Motor thalamus (va, vl) .56 .58
Motor cortical areas
Primary motor 74 71 74 74
Dorsal premotor .66 .66 .66 .57
Ventral premotor .59 .62 .61
SMA .56 .58
Posterior ACC .59 .58 .58
Visual cortical areas
Extrastriate cortex .57 .54 .53 .55
Other cortical areas
Dorsolateral PFC .55
II task/Disjunctive RB task
Subcortical areas
Putamen .60
Pallidum .56 .56
Motor thalamus (va, vl) .60 .59 .57
Frontal thalamus (md) .58
Motor cortical areas
Primary motor 72 .70 78 74
Dorsal premotor 57 .65 .63 .63
Ventral premotor .61 .61 .63 .60
SMA .57 .56
Visual cortical areas
Extrastriate cortex .56
Simple RB task/Disjunctive RB task
Subcortical areas
Putamen .56 .56 57
Head of the caudate .56
Pallidum .57
Motor thalamus (va, vl) .63 .57 .59 .58
Frontal thalamus (md) .60 .56 .58 .57
Motor cortical areas
Primary motor .76 75 78 .76
Dorsal premotor .63 .66 .64 .61
Ventral premotor .61 .61 60 .63
SMA .60 .61
Posterior ACC .61 .63
Other cortical areas
Hippocampus .56

Category learning

The top two circles in Fig. 3 show the results from the first scanning
session, representing data acquired when early category learning was
still in progress. The common patterns analysis suggests that common
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patterns of activity across all tasks can be found in motor areas, both
cortical and thalamic. This result is likely due to the fact that all catego-
rization tasks involved the same motor responses and it might be
general to any task involving such responses, instead of specific to the
categorization tasks included here. Besides these motor areas, there is
evidence suggesting common patterns of activity between the II task
and the RB tasks in only two areas: ESC (both RB tasks) and GP (simple
RB task only). In contrast, the results suggest common patterns of activ-
ity to both RB tasks in an additional motor ROI (SMA) and in three other
non-motor ROIs (PUT, CD-hd, mdTH).

The unique patterns analysis showed a much more complex pattern
of results. Only one ROI, pACC, included patterns of activation that could
discriminate all pairs of tasks. More ROIs can discriminate between the II
task and each of the RB tasks, including thalamic (va/vITH, mdTH),
motor (SMA, vPM), visual (IT) and striatal (CD-bt) regions. Interestingly,
the subcortical ROIs that could discriminate between the II task and the
simple RB task could also discriminate between the two RB tasks. The
areas that can only discriminate between RB tasks are the VIPFC, ESC
and M1. The areas that can only discriminate the II from either of the
RB tasks are SMA, IT and vPM.

Finally, it is worth noting that classification accuracy did not reach
significance in either classification analysis for some cortical areas, in-
cluding visual (V1), medial temporal (HPC), and frontal (dIPFC,
mACC, pre-SMA) areas.

Categorization automaticity

The three bottom rows in Fig. 3 depict information from the last
three scanning sessions, representing data acquired during the devel-
opment of automaticity. The common patterns analysis suggests that
motor ROIs consistently provided common patterns of activity across
all tasks throughout the experiment. This is also true of the motor
thalamus (va/vITH). In the last session, the only motor ROI that is
not included in the diagram is SMA.

On the other hand, basal ganglia ROIs lose their informativeness
for the common patterns analyses as automaticity develops, and
none of them is included in the diagram by the final session. Interest-
ingly, the results suggest that mdTH still holds activation patterns
that are common to both RB tasks by the end of training.

The most striking pattern of results from the unique patterns analy-
sis is that the number of informative ROIs drops considerably across the
development of automaticity, from 3 to 7 ROIs in the first two sessions,
to only 1-2 in the last session. The largest drop occurs between the sec-
ond and third sessions and it affected all types of ROIs (i.e., subcortical,
motor, visual, medial temporal and frontal) more or less equally in the
discrimination between the II task and both RB tasks. On the other
hand, in the discrimination between the two RB tasks, the drop in

Ses 2- Simple RB

Ses 3-Simple RB

T

Simple Ses 3- Disjunctive RB

Ses 3-1I

Ses 2-

Disjunctive RB

Ses 2-11

Dimension 1

Fig. 4. Results of the classification similarity analysis. The left panel shows the mean Pearson correlation between representational similarity matrices of different tasks in each scan-
ning session. The right panel shows the two-dimensional solution of a multidimensional scaling performed on the dissimilarities (1-Pearson correlation) between all representa-

tional similarity matrices obtained, one for each combination of task and scanning session.
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Fig. 5. Matrices of correlations between ROIs obtained in the classification similarity analysis and their pairwise correlations within each session. Each cell within a matrix displays a
contour line from a bivariate normal density matching the observed correlation. Red ellipses represent negative correlations and blue ellipses represent positive correlations. The
shade of color represents correlation magnitude, with darker color indicating higher absolute correlations.
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informative ROIs occurred mostly in subcortical, frontal and medial
temporal areas. Motor cortical areas remained informative during the
third session, but not in the final session, whereas visual areas remained
informative until the final session.

The general drop in the informativeness of all ROIs within the
unique patterns analysis explains why several motor areas that show
both common and unique patterns early in training (brown) show
only common patterns later on (purple). Note that in the last session
most ROIs are either exclusively informative for the common patterns
analysis (purple) or for the unique patterns analysis (orange).

A closer look at the pattern of results for each ROI in the unique
patterns analysis reveals that results were much more inconsistent
than in the common patterns analysis, in the sense that most ROIs
did not reliably discriminate between tasks in more than one session.
This pattern is easier to visualize by comparing Tables 2 and 3. Relat-
edly, the data does not show a clear dissociation between ROIs that
could discriminate only between II and RB tasks and areas that
could discriminate only between different RB tasks. For example, all
subcortical ROIs could discriminate between the II task and at least
one RB task. All subcortical ROIs could also discriminate between
the two RB tasks in either of the first two sessions. The results regard-
ing frontal and medial temporal ROIs show a more clear dissociation.
Whereas pre-SMA could discriminate the II task from both RB tasks
(scanning sessions 2 and 3), vIPFC and HPC could discriminate be-
tween RB tasks (scanning sessions 1 and 2).

As indicated before, the ROIs that were not informative in either
analysis during the first scanning session were visual, medial temporal,
and non-motor cortical regions. By the last session, basal ganglia ROIs
and one motor area (SMA) joined this set.

Classification similarity analysis

The results of the classification similarity analysis are summarized
by twelve RDMs, one for each combination of task and session. Each
cell in an RDM contains an estimation of how dissimilar the category
representations are in a pair of ROIs. The whole RDM is thus a sum-
mary of the degree of similarity of the category representations across
all ROIs. These patterns of representational similarity can themselves
be similar or dissimilar for two specific tasks, which can be measured
by correlating the tasks' RDMs.

The most important result from the classification similarity analy-
sis is summarized in Fig. 4. The left panel shows the mean correlation
between individual task RDMs across the four scanning sessions. The
permutation test indicated that these mean correlations were signifi-
cantly above zero (p<.05) in sessions 1, 3 and 4 (after Bonferroni cor-
rection for multiple comparisons). The mean correlation among RDMs
increased with over-training in each task. A line fit to these data had a
slope of .0591, which was significantly above zero (p<.05) according
to the permutation test. This increase in correlation was observed for
each pair of RDMs (see Fig. 5 and its description below).

Dissimilarities (one minus Pearson correlation) between all pairs
of RDMs (3 tasksx4 sessions) were entered into a non-metric
multidimensional scaling analysis, which positioned these RDMs in
the two-dimensional configuration that best conserved their original
dissimilarities. The results are shown in the right panel of Fig. 4; they
reveal that RDMs were more similar across tasks during the last ses-
sion than to other RDMs from the same task in previous sessions.

A more detailed visualization of the results of this analysis is provid-
ed in Fig. 5, which shows matrices of correlations between ROIs
(1-RDM) for each task and each scanning session. Each cell in these ma-
trices depicts a contour line from a bivariate normal density matching
the observed correlation (Murdoch and Chow, 1996). To aid visualiza-
tion, negative correlations are plotted in red and positive correlations
in blue, with darker shades of color representing higher magnitudes.
The correlations between each pair of matrices in a particular session
are shown below them as well.

Table 3

Statistically significant (permutation test, p<.05) accuracies of the MVPA classifier in
the unique patterns analysis. Different columns show results from different scanning
sessions.

Session 1 Session 2 Session 3 Session 4

II task/Simple RB task
Subcortical areas
Body and tail of caudate .58
Head of the caudate .59
Motor thalamus (va, vl) .61
Frontal thalamus (md) .59
Motor cortical areas
Primary motor .56
Dorsal premotor .56
SMA .64 .58
Posterior ACC .57 .67
Visual cortical areas
Primary visual .55
Inferotemporal cortex .58
Other cortical areas
Pre SMA .61 .57

II task/Disjunctive RB task
Subcortical areas
Putamen .64 58
Body and tail of caudate .65
Pallidum .60
Motor cortical areas
Primary motor .57
Ventral premotor .65
SMA .57
Posterior ACC .62 .65
Visual cortical areas
Primary visual .57
Extrastriate cortex .56
Other cortical areas
Medial ACC .68
Pre SMA 57 .58

Simple RB task/Disjunctive RB task
Subcortical areas
Putamen .56 .57
Body and tail of caudate .55 .61
Head of the caudate .58
Pallidum 57
Motor thalamus (va, vl) 57 62
Frontal thalamus (md) .66 .66
Motor cortical areas
Primary motor 57
Dorsal premotor .56
SMA .56
Posterior ACC 57 .62
Visual cortical areas
Primary visual .67 .59
Extrastriate cortex .56 .67 .60
Other cortical areas
Ventrolateral PFC .60
Hippocampus .58

When the matrices from the first and last sessions are compared,
the most salient pattern of results is that many ROIs decrease their
correlations with other regions in the Il and simple RB tasks. Regions
in the basal ganglia, medial temporal and frontal lobes, which show
patterns of classification accuracies similar to other brain regions
early in training, show decreased similarities by the last session. In
the II task, for example, correlations between regions of the basal
ganglia and other regions go from being mostly positive during the
first session to being mostly negative in the last session. In the simple
RB task, correlations between most ROIs are positive and relatively
high in the first session. By the last session, correlations have de-
creased considerably, especially in frontal and medial temporal re-
gions, but also in the basal ganglia. On the other hand, in both the II
task and the simple RB task a number of ROIs in the center of the
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matrix seem to maintain moderately positive correlations with one
another. These include thalamic nuclei, motor regions, visual regions,
and prefrontal cortex.

Similar changes are not apparent in the Disjunctive RB task, which
shows a rather sparse pattern of correlations from early on. Thus, the in-
crease in similarity between RDMs across training might be due to a de-
crease in the correlations between areas in the basal ganglia, frontal and
medial temporal cortex and all other ROIs, which is observed in the II
task and the simple RB task, but not in the Disjunctive RB task.

Discussion

In the first scanning session, when category learning was likely to
still be in progress, as expected the results suggested that patterns of ac-
tivity common to all tasks and useful for categorization were present
mainly in motor regions. Only ESC and GP showed signs of patterns
common to Il and RB tasks. On the other hand, the two RB tasks shared
common patterns of activation additionally in striatal regions (PUT and
CD-hd) and the frontal thalamus (mdTH). These results are in line with
the COVIS model of category learning, which proposes that both CD-hd
and mdTH are part of the explicit system in charge of RB learning, but
not the implicit system in charge of Il learning.

The COVIS explicit system assumes that, during RB tasks, the
(working) memory of the current categorization rule is maintained
via a reverberating loop that includes lateral PFC and the medial tha-
lamic nucleus (Ashby et al., 2005). The identification of the mdTH in
the common patterns analysis is in line with this role, if it is further
assumed that the rule representation in the mdTH includes informa-
tion about the current correct category. But if so, then why was
there no evidence of the same representations in lateral PFC in this
analysis? The two RB tasks require different rules, so if the working
memory representation of the current rule is stored in lateral PFC,
then one would not expect a common patterns analysis to identify
the lateral PFC. In support of this prediction, the unique patterns anal-
ysis did identify the lateral PFC as a region that differentiated be-
tween the two RB tasks. Unique patterns were also present in the
mdTH, so this area might actually include both types of representa-
tion. In sum, one interpretation of these results is that while mdTH
and lateral PFC are involved in holding the current categorization
rule in working memory, mdTH also holds information about the re-
sult of applying such rule in each specific trial.

On the other hand, COVIS proposes that the role of the head of the
caudate in the explicit system is to switch attention away from the
currently used rule when it does not lead to accurate performance. How-
ever, the present results suggest that the head of the caudate also carries
information about the category of a stimulus cluster early in learning of
RB tasks. Thus, the role of the caudate in RB tasks might be more com-
plex than just to mediate an attention switch. Perhaps the head of the
caudate is involved in the processing of feedback about the correct cate-
gory, as suggested by previous research (Cincotta and Seger, 2007; Seger
and Cincotta, 2005), and the t-maps obtained here did not completely
un-mix the caudate response related to stimulus presentation from
that related to feedback processing. Alternatively, the head of the cau-
date could be involved in predicting feedback from the presentation of
a stimulus. However, neither of these hypotheses would explain why
significant accuracy was found only early in training and not in the anal-
yses involving the II task. One possibility is that initial stages of category
learning in rule-based tasks involve learning of stimulus-response asso-
ciations in the caudate, which is later followed by learning of more ab-
stract aspects of the task in lateral PFC (see Antzoulatos and Miller,
2011; Helie et al., 2010a). More research seems to be necessary to better
understand the role of the head of the caudate in RB tasks.

The unique patterns analysis revealed that the three tasks could be
discriminated from one another using information from many differ-
ent areas. During the first session, all pairs of tasks could be discrim-
inated on the basis of patterns in the cortical motor (M1, vPM, SMA,

pACC), and thalamic motor (va/vITH) regions. Thus, motor activity
was consistently different across tasks despite the fact that the same
motor responses were involved in all cases. Furthermore, visual re-
gions (ESC, IT) also discriminated the simple RB task from the other
two tasks, which could be due to top-down influences from category
representations in other areas (Miller et al., 2010).

The CD-bt could distinguish between the simple RB task and both of
the other two tasks. Each medium spiny neuron in this striatal region re-
ceives projections from thousands of neurons in visual cortex (Kincaid
et al,, 1998), which makes it a candidate for visual category learning. If
cells in the CD-bt came to respond to a stimulus category through learn-
ing, then this would explain why patterns of activity from this region
supported high accuracy in the unique patterns analysis.

The two RB tasks could also be discriminated using patterns in the
mdTH and VIPFC, the two regions involved in holding representations
of rules and categories in working memory during learning in the ex-
plicit system of COVIS. This suggests that such representations were
different across different RB tasks, in line with the fact that the two
tasks required different explicit rules. The mdTH could also differen-
tiate between the simple RB task and the II task, suggesting perhaps
a different involvement of working memory in both. The same was
not found for the discrimination of the Disjunctive RB task and the
II task. In this case, significant classifier accuracy was achieved using
patterns from motor regions only.

Fig. 3 shows that the analyses did not find either common or unique
patterns of activation across tasks for a number of ROIs during the first
session: V1, dIPFC, mACC, pre-SMA and HPC. COVIS does not propose
any special role for most of these areas in category learning, with the ex-
ception of mACC. The role of the ACC in the COVIS explicit system is to
select among different candidate rules (Ashby and Valentin, 2005).
Such selection would occur only when there is evidence that the rule
in current use does not produce good performance. Thus, activity in
mACC would not be present on most learning trials.

COVIS proposes that explicit categorization rules are held in lateral
PFC during RB category learning. Here it was found that RB tasks
could be discriminated in the first session on the basis of vIPFC activa-
tion, but not dIPFC activation. Previous studies have shown that vIPFC
is specifically involved in the maintenance of information in working
memory, whereas dIPFC is involved in the preparation of planned
actions (e.g., Yoon et al., 2007). The specific rules and categories
that should be kept in working memory were different in the two
RB tasks, but the actions involved in both tasks were not, which
could explain why they were differentiated in vIPFC but not in dIPFC.

Currently, the role of the HPC in categorization is unclear (for a re-
view, see Ashby and Crossley, 2010a). Although a few imaging studies
have reported HPC activation in categorization tasks (Helie et al.,
2010a, Poldrack et al., 2001; Seger et al., 2011), many others have not
(e.g. Lopez-Paniagua and Seger, 2011; Seger and Cincotta, 2005; Seger
et al.,, 2010). Similarly, a few studies have reported category-learning
deficits by amnesic patients (Kolodny, 1994; Zaki et al., 2003), but
many have reported near normal performance (e.g., Filoteo et al.,
2001; Janowsky et al, 1989; Knowlton and Squire, 1993; Leng and
Parkin, 1988). COVIS predicts that the main role of the HPC is to encode
the long-term memory of specific explicit categorization rules (Ashby
and Valentin, 2005; see also Nomura and Reber, 2008). In support of
this prediction, we found that accurate discrimination of the two RB
tasks was possible using HPC activation only during the second scan-
ning session, when subjects might have been able to recall the correct
rules that they discovered during previous training sessions. After the
development of automaticity in later sessions, explicit recall would
not be necessary for correct categorization performance.

An important question is whether the size of different ROIs (see
Table 1) might have an influence on classifier accuracy and could ex-
plain some of our results. Usually only a proportion of all voxels in
an ROI will carry useful information for MVPA and all other voxels
will carry only noise, which is why in most applications only a subset
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of informative voxels is selected to be included in the analysis. Larger
ROIs would include a larger number of voxels contributing only noise
to the classification task, potentially leading to lower accuracy for test
patterns (due to over-fitting to the training data). To explore this pos-
sibility, we computed the Pearson correlation between ROI size and
classifier accuracy for each of the analyses reported here. The average
correlation (Corey et al., 1998) was equal to .264 and was statistically
significant, z=6.89, p<.001. However, this correlation was positive,
which is the opposite result from what would be expected if larger
ROIs were just adding noisy voxels. Furthermore, closer inspection of
the data revealed that the correlation between ROI size and classifier
accuracy was driven by a single outlier, M1, which was both the larg-
est ROI (see Table 1) and showed the highest classification accuracy in
most analyses. When M1 was excluded from the correlation analysis,
the average correlation dropped to .004, which was not statistically
significant, z=.09, p>.1. In sum, it is unlikely that ROI size affected
our results importantly.

Note also that variations in ROI sizes could only explain differences
in accuracy across different ROIs, whereas our analyses focused on the
comparison of accuracy across sessions and groups within each ROL
Only the classification similarity analysis compared different ROIs for
the same subject, and in that case the similarity between the confusion
vectors associated to each pair of ROIs was computed using a correlation
coefficient, which is invariant to overall changes in accuracy.

Our analyses revealed three important changes in the information
held by different ROIs as automaticity developed with overtraining,
from scanning sessions two to four. First, the number of ROIs that
were informative for discrimination of different tasks dropped precipi-
tously as training progressed, suggesting that patterns of activation
unique to each task became more rare across all brain regions. Thus,
the previously reported behavioral similarity between RB and II tasks
after the development of automaticity (Helie et al., 2010b) is mirrored
by increasingly similar activity patterns across a variety of brain regions.

Second, common patterns of activation remained present in motor
regions, but they mostly disappeared from basal ganglia regions and
from SMA. The basal ganglia result is in line with the results of previous
univariate analyses of the present dataset by Helie et al. (2010a) and
Waldschmidt and Ashby (2011), which revealed that basal ganglia ac-
tivity that correlated with successful performance in I and RB tasks de-
creased with overtraining. A general reduction in the informativeness of
SMA activation patterns for categorization is in line with its hypothe-
sized role in motor control. It has been proposed that SMA might be in-
volved in the production of voluntary movements, whereas other
premotor areas would mediate the production of automatic move-
ments (Haggard, 2008). From this perspective, SMA would be the only
motor ROI expected to reduce its participation in categorization behav-
ior with the development of automaticity, which was the observed re-
sult. The SMA has also been linked to more “cognitive” functions than
other premotor areas, such as inhibiting conflicting responses or
switching between rules or movement plans (Nachev et al, 2008).
Both of these candidate functions are also consistent with a decrease
of the involvement of SMA as automaticity develops. The exploration
of different response alternatives and the active inhibition of responses
might be necessary in the early stages of category learning, but not
with well-learned tasks. Third, patterns of representational similarity
between brain regions become more similar across tasks with the de-
velopment of automaticity, as revealed by the classification similarity
analysis.

These three results are in line with the general proposal advanced
by SPEED and the model proposed by Helie and Ashby (2009), that
overtraining in RB and II tasks should lead to progressively more sim-
ilar networks in charge of successful classification behavior, resulting
from a decrease in the role of subcortical areas in such behavior. The
present results suggest that, in addition, the development of automa-
ticity leads to more similar patterns of stimulus-related activation
across brain areas, and more similar patterns of representational

similarity. Thus, our results support the proposal of Ashby and
Crossley (2012) that although humans have multiple category learn-
ing systems, they may have only one system for mediating automatic
categorization responses. Further computational and empirical work
will be necessary to better understand whether and how changes in
the patterns of connectivity among brain areas could give rise to the
changes in category representations suggested by the present results.
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