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General recognition theory (GRT; Ashby & Townsend, 1986) is a multivariate extension of
signal detection theory to cases in which there is more than one perceptual dimension. GRT
has traditionally only been concerned with behavioral data, but during the past decade or two,
much has been learned about the architecture and functioning of the neural circuits that im-
plement the perceptual and decision processes hypothesized by GRT. This chapter reviews
this neuroscience literature, with a focus on three separate questions. First, what does the
neuroscience literature say about the validity of GRT? Second, how can we use results from
the neuroscience literature to improve GRT applications? Finally, how can GRT analyses be
extended to neuroscience data?

Introduction

General recognition theory (GRT; Ashby & Townsend,
1986) is a multivariate extension of signal detection theory to
cases in which there is more than one perceptual dimension.
It has all the advantages of univariate signal detection the-
ory (i.e., it separates perceptual and decision processes) but
it also offers the best existing method for examining interac-
tions among perceptual dimensions (or components). Since
its inception, hundreds of articles have applied GRT to a wide
variety of phenomena, including categorization (e.g., Ashby
& Gott, 1988; Maddox & Ashby, 1993), similarity judgment
(Ashby & Perrin, 1988), face perception (Blaha, Silbert,
& Townsend, 2011; Soto, Vucovich, Musgrave, & Ashby,
2014; R. D. Thomas, 2001; Wenger & Ingvalson, 2002),
recognition and source memory (Banks, 2000; Rotello,
Macmillan, & Reeder, 2004), source monitoring (DeCarlo,
2003), attention (Maddox, Ashby, & Waldron, 2002), object
recognition (Cohen, 1997; Demeyer, Zaenen, & Wagemans,
2007), feature binding (Ashby, Prinzmetal, Ivry, & Maddox,
1996), perception/action interactions (Amazeen & DaSilva,
2005), auditory and speech perception (Silbert, 2012; Sil-
bert, Townsend, & Lentz, 2009), haptic perception (Giordano
et al., 2012; Louw, Kappers, & Koenderink, 2002), and the
perception of sexual interest (Farris, Viken, & Treat, 2010).
Townsend has been at the forefront of this movement, co-
authoring the article that introduced and named GRT and ad-
vancing the theory with many subsequent contributions.

Of course, the perceptual and cognitive processes mod-
eled by GRT are mediated by circuits in the brain. During
the past decade or two, much has been learned about the
architecture and functioning of these circuits. This chapter
reviews this neuroscience literature, with a focus on three

separate questions. First, what does the neuroscience liter-
ature say about the validity of GRT? In other words, do the
recent discoveries in neuroscience support or disconfirm the
fundamental assumptions of GRT? Second, how can we use
results from the neuroscience literature to improve GRT ap-
plications? For example, are there experimental conditions
that improve the validity of GRT analyses? Third, how can
GRT analyses be extended to neuroscience data, and espe-
cially to data from neuroimaging experiments?

Supporting evidence for the neural feasibility of GRT

GRT is an extremely general model of perception and de-
cision making that has been applied to a great variety of dif-
ferent tasks and behaviors. Nevertheless, it makes some core
assumptions that are assumed to hold in all applications. In
particular, it assumes two separate stages of processing – a
sensory/perceptual stage that must generally precede a sec-
ond decision stage. It also assumes that all sensory represen-
tations are inherently noisy, that every behavior, no matter
how trivial, requires a decision, and that decision processes
can be modeled via a decision bound. All but the last of these
assumptions also define univariate signal detection theory.

When GRT was first proposed nearly 30 years ago, the
only one of these assumptions with any independent support
was that all sensory representations are noisy. The other as-
sumptions were justified almost exclusively on the basis of
intuitive appeal. During the intervening three decades how-
ever, the explosion of new neuroscience knowledge has pro-
vided strong tests of all GRT assumptions. This section re-
views these assumptions and the relevant neuroscience data.
As we will see, for the most part, neuroscience has solidified
the foundations of GRT.
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Separate sensory and decision processes

GRT and signal detection theory both assume that deci-
sion processes act on a percept that may depend on the nature
of the task, but does not depend on the actual response that
is made. GRT can be applied to virtually any task. However,
the most common applications are to tasks where the stimuli
vary on two stimulus components or dimensions. Call these
A and B. Then a common practice is to let AiB j denote the
stimulus in which component A is at level i and component
B is at level j. GRT models the sensory or perceptual effects
of stimulus AiB j via the joint probability density function
(pdf) fi j(x1, x2). On any particular trial when stimulus AiB j

is presented, GRT assumes that the subject’s percept can be
modeled as a random sample from this joint pdf, and that
the subject uses these values to select a response. Thus, the
pdf fi j(x1, x2) is the same on every trial that stimulus AiB j is
presented, regardless of what response was made, or in other
words, GRT assumes that a sensory representation is formed
first, and then decision processes use this representation to
select a response. A possible neural implementation of the
theory would require that the brain processes used to repre-
sent the perceptual properties of stimuli are relatively sepa-
rated from the brain processes used to set criteria for decision
making (which determine response biases).

Even 30 years ago, it was known that the flow of infor-
mation from sensory receptors up through the brain, pass
through sensory cortical regions before reaching motor ar-
eas that initiate behaviors. In the case of vision, for exam-
ple, it was known that retinal ganglion cells project from
the retina to the lateral geniculate nucleus of the thalamus,
which projects to V1 (primary visual cortex), then V2, V4,
and many other regions before the M1 (primary motor cor-
tex) neurons are stimulated that cause the subject to press
one response key or the other. So the general neuroanatomy
seemed consistent with the GRT assumption of separate sen-
sory and decision processes. Even so, there was virtually
nothing known about whether visual cortex plays a signif-
icant role in the decision process. For example, the 1986
neuroanatomy was also consistent with a theory in which the
response was actually selected as the representation moved
up through higher levels of visual cortex, and that the main
goal of the processing that occurred in many psychophysi-
cal tasks in later non-visual areas (e.g., premotor cortex and
M1) was simply to serve as a relay between visual areas and
the effectors that would execute the selected behavior. This
type of intermingling would violate the GRT assumption that
sensory/perceptual and decision processes are relatively sep-
arate.

In fact, the evidence is now good that decisions are not
mediated within visual cortex. For a while, however, evi-
dence against the GRT assumption of separate sensory and
decision processes seemed strong. The most damning evi-
dence came from reports of a variety of category-specific ag-

nosias that result from lesions in inferotemporal cortex (IT)
and other high-level visual areas. Category-specific agnosia
refers to the ability to perceive or categorize most visual stim-
uli normally but a reduced ability to recognize exemplars
from some specific category, such as inanimate objects (e.g.,
tools or fruits). The most widely known of such deficits,
which occur with human faces (i.e., prosopagnosia), are as-
sociated with lesions to the fusiform gyrus in IT. In GRT, a
category is defined by a response region, not by a perceptual
distribution. So the association of category-specific agnosias
to lesions in visual cortex seemed to suggest that the visual
areas were also learning the decision bounds that defined the
categories.

Of course, a category-specific agnosia that results from an
IT lesion does not logically imply that category representa-
tions are stored in IT. For example, although such agnosias
are consistent with the hypothesis that category learning oc-
curs in IT, they are also generally consistent with the hypoth-
esis that visually similar objects are represented in nearby
areas of visual cortex. In particular, it is well known that
neighboring neurons in IT tend to fire to similar stimuli.

Take the example of the most anterior IT region in the
monkey brain: area TE. This is the final stage of purely visual
processing in the primate brain; thus, if high-level categorical
representations were stored in visual cortex, TE would be a
likely place for their storage. Research indicates that most
neurons in this area are maximally activated by moderately
complex shapes or object parts (for reviews, see Tanaka,
1996, 2004); that is, by features that are more complex than
simple edges or textures, but not complex enough to repre-
sent a whole natural object or object category. Because neu-
rons in TE are selective to partial object features, the repre-
sentation of a whole object requires the combined activation
of at least several of these neurons. In other words, anterior
IT seems to code for objects in a sparse distributed manner
(Rolls, 2009; E. Thomas, Van Hulle, & Vogels, 2001), which
is confirmed by analyses showing that the way in which in-
formation about a stimulus increases with the number of IT
neurons that are sampled is in line with a sparse distributed
code (Abbott, Rolls, & Tovee, 1996; Hung, Kreiman, Pog-
gio, & DiCarlo, 2005; Rolls, Treves, & Tovee, 1997). It ap-
pears that TE cells that code for similar features cluster in
columns (Fujita, Tanaka, Ito, & Cheng, 1992), that a single
object activates neurons in several columns (Wang, Tanifuji,
& Tanaka, 1998; Yamane, Tsunoda, Matsumoto, Phillips, &
Tanifuji, 2006), and that the columns that are activated by
two similar objects represent features that are common to
both (Tsunoda, Yamane, Nishizaki, & Tanifuji, 2001). Thus,
damage to some contiguous region of IT (or any other visual
cortical area) is likely to lead to perception deficits within a
class of similar stimuli, due to their shared perceptual fea-
tures.

In fact, there is now strong evidence that decision pro-
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cesses are not implemented within visual cortex. For exam-
ple, Rolls, Judge, and Sanghera (1977) recorded from neu-
rons in IT of monkeys. In these experiments, one visual stim-
ulus was associated with reward and one with a mildly aver-
sive taste. After training, the rewards were switched. Thus,
in effect, the animals were taught two simple categories (i.e.,
“good” and “bad”), and then the category assignments were
switched. If the categorical decision was represented in the
visual cortex, then the firing properties of visual cortical neu-
rons should have changed when the category memberships
were switched. However, Rolls et al. found no change in the
response of any of these cortical neurons, although other sim-
ilar studies have found changes in the responses of neurons
in other downstream brain areas (e.g., orbitofrontal cortex).

More recent studies have found similar null results with
more traditional categorization tasks (Freedman, Riesenhu-
ber, Poggio, & Miller, 2003; Op de Beeck, Wagemans, &
Vogels, 2001; Sigala, 2004; E. Thomas et al., 2001; Vogels,
1999). In each of these studies, monkeys were taught to
classify visual objects into one of two categories (e.g., tree
versus non-tree, two categories of arbitrary complex shapes).
Single-cell recordings showed that the firing properties of IT
neurons did not change with learning. In particular, IT neu-
rons showed sensitivity to specific visual images, but cate-
gory training did not make them more likely to respond to
other stimuli in the same category or less likely to respond to
stimuli belonging to the contrasting category.

Similar results have been found in neurobiological stud-
ies of visual perceptual learning. The standard model of
perceptual learning includes an early stage of sensory pro-
cessing that is separate from a later stage of decision making
(Amitay, Zhang, Jones, & Moore, 2014; Law & Gold, 2010).
Theories proposing changes in the later decision stage of pro-
cessing have been particularly successful in accounting for
the available data (Amitay et al., 2014), including findings
of heightened behavioral sensitivity that are not associated
with changes in early sensory areas, but instead with the way
that sensory information is used to form a decision variable
at later stages of processing (e.g., Kahnt, Grueschow, Speck,
& Haynes, 2011; Law & Gold, 2008).

On the other hand, under certain conditions, categoriza-
tion training can change the firing properties of IT neurons.
Sigala and Logothetis (2002; see also De Baene, Ons, Wage-
mans, & Vogels, 2008; Sigala, 2004) trained two monkeys
to classify faces into one of two categories and then in a
separate condition to classify fish. In both conditions, some
stimulus features were diagnostic and some were irrelevant
to the categorization response. After categorization training,
many neurons in IT showed enhanced sensitivity to the di-
agnostic features compared to the irrelevant features. Such
changes are consistent with the widely held view that cate-
gory learning is often associated with changes in the alloca-
tion of perceptual attention (Nosofsky, 1986). Accounting

for such shifts in perceptual attention is straightforward in
GRT. The typical approach is to assume that increases in the
amount of attention allocated to a perceptual dimension re-
duces perceptual variance on that dimension (Maddox et al.,
2002; Soto et al., 2014).

Changes in the selectivity of IT neurons after categoriza-
tion training are consistent with the hypothesis that cate-
gory learning is mediated outside the visual system, and that
the attentional effects of categorization training are propa-
gated back to visual areas through feedback projections (see
Gilbert & Sigman, 2007; Kastner & Ungerleider, 2000). In
support of this hypothesis, the effect of category learning on
neural responses is stronger in non-visual areas, such as the
striatum and PFC, than in IT (De Baene et al., 2008; Seger
& Miller, 2010). Simultaneous recordings from PFC and
IT neurons during category learning show that, although IT
neurons change their firing after learning, the changes are
weaker than in PFC and several results suggest that the IT
changes might be driven by PFC input (Freedman et al.,
2003; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008).

On the other hand, the presence of feedback projections
from higher-level areas (e.g., PFC) to visual cortex (and be-
tween visual areas, see Salin & Bullier, 1995) could be taken
as evidence that decisional processes might influence percep-
tual representations. As suggested earlier, however, it seems
likely that most such influences could be explained by a GRT
model that allows attentional modulation of perceptual noise.
Furthermore, the fast behavioral and neural responses in vi-
sual tasks suggest that information conveyed by feedforward
processing is often sufficient for object recognition and clas-
sification (e.g., Hung et al., 2005; Thorpe & Fabre-Thorpe,
2001). This supports a simple feedforward two-stage model
of perceptual decision making.

Notwithstanding the previous discussion, the presence of
feedback connections (Salin & Bullier, 1995), the evidence
of top-down influences in vision (e.g., Kveraga, Ghuman, &
Bar, 2007; Gilbert & Sigman, 2007), and the possibility of
categorical representations within visual cortex should all be
taken seriously. Are these fatal blows to the assumptions of
GRT? We would argue that the answer is “no,” as all these
issues are orthogonal to the issue of whether or not there are
separate mechanisms for visual representation and for set-
ting criteria for decision making. From the point of view of
GRT, only the processes involved in setting criteria should
be modifiable in very short timescales (of minutes) by vari-
ables such as verbal instructions and reward history. When-
ever studies have looked at this specific distinction, they have
consistently found that the processes involved in setting cri-
teria recruit for the most part motor and frontal areas. For
example, the development of decision biases in people is
correlated with activity in the same areas involved in reward
processing during goal-directed action, including the ventral
striatum (Chen, Jimura, White, Maddox, & Poldrack, 2015).
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Another example are studies that have looked at the neu-
ral basis of the speed-accuracy tradeoff (e.g., Bogacz, Hu,
Holmes, & Cohen, 2010; Heitz, 2014), which is usually ex-
plained as resulting from changes in criteria during percep-
tual decision making. High levels of activity in the stria-
tum and pre-SMA are found during decisions that are biased
towards speed both in people (Forstmann et al., 2008) and
monkeys (Lauwereyns, Watanabe, Coe, & Hikosaka, 2002),
and individual variability in levels of response caution are
correlated with changes in striatal activity (Forstmann et al.,
2008) and with the strength of white matter tracts from pre-
SMA to striatum (Forstmann et al., 2010). The development
of perceptual representations in the visual system might in-
volve interactive processing, top-down influences and even
categorical representations. However, the evidence clearly
suggests that different processes are involved in setting cri-
teria for decision making, as proposed by GRT. As indicated
earlier, the evidence also clearly points out that feedback-
based category learning, which just as criterion setting oc-
curs in the timescale of minutes, has a substrate in associative
areas such as the prefrontal cortex and the basal ganglia.

In summary, the best evidence suggests that decisions
about what response to make are not learned or formed in vi-
sual cortex. Instead, the evidence supports the GRT assump-
tion that visual cortex builds the perceptual representation of
the visual stimulus as activation moves up from V1 to IT. Ac-
cording to this view, IT could be seen as the terminal stage
of the perceptual system. If so, then it follows that decision
processes should be mediated by structures receiving direct
projections from IT. There are three obvious candidates: the
prefrontal cortex (PFC), the medial temporal lobes (i.e., the
hippocampal system), and the basal ganglia. As it happens,
many relevant studies have examined each of these targets.
A review of this large literature, however, is well beyond the
scope of this chapter.

All sensory representations are noisy

A second fundamental assumption of GRT (and signal de-
tection theory) is that there is trial-by-trial variability in the
perceptual information obtained from every object or event
(Ashby & Lee, 1993). The evidence supporting this assump-
tion is overwhelming (for recent reviews, see Faisal, 2012;
Faisal, Selen, & Wolpert, 2008), and was overwhelming even
in 1986 when GRT was first proposed.

First, physical stimuli are intrinsically variable. For ex-
ample, the number of photons emitted by a constant light
source is approximately Poisson distributed (e.g., Geisler,
1989; Wyszecki & Stiles, 1982). In a Poisson distribution,
the mean equals the variance, so the standard deviation of
the number of photons reaching the cornea increases as the
square root of the stimulus luminance. Therefore, intense
stimuli are more variable than threshold-level stimuli.

Second, variability occurs after the stimulus enters the

sensory system and before transduction (called perireceptor
noise). For example, in vision, variable amounts of light are
scattered or absorbed while it passes through the lens and the
aqueous and vitreous humors. In fact, Barlow (1977) esti-
mated that somewhere between 67% and 89% of the photons
that strike the cornea are never absorbed by a photoreceptor.

Third, virtually all neurons in the brain exhibit sponta-
neous activity. For example, spontaneous isomerization of
photopigment occurs frequently enough to be called “dark
light” (Barlow, 1957) and retinal ganglion neurons can have
spontaneous firing rates as high as 100 Hz (Robson, 1975).

Finally, there is also variability in the chemical events that
occur at every neural synapse and across the neuronal mem-
brane. There are many causes, including variability in the
number of neurotransmitter molecules released presynapti-
cally, variability in the time it takes neurotransmitter to dif-
fuse across the synapse, variability in the number of neu-
rotransmitter molecules that bind to a post-synaptic recep-
tor, etc. Collectively, these stochastic processes produce sig-
nificant variability in the postsynaptic response to identical
presynaptic stimulation (e.g., Kleppe & Robinson, 2006).
Furthermore, due to thermodynamic effects, voltage-gated
ion channels open and close randomly, producing random
variability in electrical currents (White, Rubinstein, & Kay,
2000). This "channel noise" might be one of the most impor-
tant sources of biochemical noise at the neuronal membrane
(Faisal, 2012).

One might propose that such randomness at the biophys-
ical and biochemical levels is averaged out at the level of
neurons and neural circuits. This is not necessarily true, as
operations in neurons are highly non-linear and might act to
amplify small effects, and key structures are small enough to
be responsive to randomness at small scales (Faisal, 2012).
Indeed, it has been shown that channel noise should affect
the reliability of action potential propagation in thin axons,
such as those found in mammalian cortex (Faisal & Laughlin,
2007).

All these sources of noise should cause us to expect vari-
ability in the timing of action potentials within and across
trials, even under the same conditions of stimulation. Such
variability has been observed (Shadlen & Newsome, 1998).
Again, one might propose that the variability observed at the
level of the responses of single neurons might average out
at larger scales and not be relevant for behavioral perfor-
mance, in contrast to the predictions of GRT. However, there
is plenty of evidence showing that variability in the responses
of sensory neurons is behaviorally relevant in perceptual dis-
crimination tasks. For example, several studies have found
a relation between the trial-by-trial variability in the activity
of neurons and in the responses given by participants (e.g.,
Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996;
Purushothaman & Bradley, 2005). These results suggest that
the random activity from such neurons influences behavioral
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decisions (Gold & Ding, 2013).
Furthermore, noise in sensory representations can explain

observed phenomena involving “discrimination” of identical
stimuli. Perceptual learning has been found after training in
a discrimination task involving identical stimuli (Amitay, Ir-
win, & Moore, 2006) and a signal-detection analysis showed
that such effects can be explained as resulting from variabil-
ity in internal sensory representations (Micheyl, McDermott,
& Oxenham, 2009). Confirming this hypothesis, Amitay et
al. (2013) found that identical auditory stimuli evoked differ-
ent EEG responses as early as 100 ms after stimulus onset,
depending on whether the stimuli were perceived to be same
or different.

Every task requires a decision

There is a wealth of evidence (reviewed by Gold &
Shadlen, 2007) supporting the assumption that even the sim-
plest discrimination tasks recruit separate neural representa-
tions for sensory and decision processes. For example, in
a vibrotactile frequency discrimination task, participants are
exposed to a vibrating stimulus on their skin and are required
to report what frequency of stimulation they perceived. Elec-
trophysiological studies in monkeys show that neurons in so-
matosensory cortex respond in this task as if they encode
a sensory representation, with increasing rate of responding
as frequency of stimulation increases, but without reflecting
the final decision (Hernández, Zainos, & Romo, 2000). On
the other hand, neurons in prefrontal (e.g., Brody, Hernán-
dez, Zainos, & Romo, 2003) and premotor cortices (Romo,
Hernández, & Zainos, 2004) respond in this task as if they
encode the actual judgement leading to a behavioral decision.

Perhaps the most widely used task to study the role of
decision processes in simple sensory discriminations is the
random-dot motion (RDM) discrimination task. This task
presents participants with a cloud of moving dots, some of
them moving in a coherent direction and others moving in a
random direction. Participants must report the direction of
motion of the coherently moving dots, whose proportion is
determined by the experimenter. Electrophysiological stud-
ies with monkeys have shown that neurons in medial tem-
poral visual cortex (area MT) respond in this task as if they
encode sensory evidence for the direction of motion. Their
average response after stimulus inception is stable, reflecting
constant differences in firing rate as a function of motion co-
herence (Gold & Shadlen, 2007). Furthermore, the effect
of microstimulation of MT neurons on behavioral choices
is similar to what is observed by changes in the actual mo-
tion coherence of the stimulus (Hanks, Ditterich, & Shadlen,
2006).

On the other hand, neurons in a number of areas – in-
cluding lateral intraparietal cortex (LIP), dorsolateral PFC
(dlPFC), and superior colliculus – seem to respond as if they
encode a decision variable that is closely related to the ac-

tual action ultimately chosen by the monkeys. The aver-
age response of these neurons to a motion stimulus increases
with time from stimulus onset, and the speed at which fir-
ing ramps-up increases with the motion coherence of the
stimulus. More importantly, the average firing reaches the
same threshold for all levels of motion coherence right before
the behavioral response is made (e.g., Roitman & Shadlen,
2002, and shows a steep drop afterwards. There is also
evidence suggesting that sensory stimulation presented af-
ter this threshold has been reached is ignored in the final
choice (Kiani, Hanks, & Shadlen, 2008). Finally, the effect
of microstimulation of LIP neurons on behavioral choices is
smaller than the effect of microstimulation of MT neurons,
especially in choice accuracy. This is in line with the idea
that MT encodes sensory evidence that is later accumulated
by LIP (Hanks et al., 2006). For example, a simple model
of these experiments is that microstimulation of MT neurons
adds a constant to the sensory evidence, which means that
the decision variable increases by this constant amount at ev-
ery time step. In contrast, microstimulation of LIP neurons
would add the same constant to the decision variable itself,
and therefore not affect the temporal integration.

Signals resembling evidence accumulation have also been
found in human experiments using fMRI (Heekeren, Mar-
rett, Bandettini, & Ungerleider, 2004) and EEG (e.g., Kelly
& O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012;
Van Vugt, Simen, Nystrom, Holmes, & Cohen, 2012). Note
that the presence of such signals is not only evidence for the
assumption that decision processes are implemented in the
brain in even the simplest perceptual discrimination tasks,
but also for the assumption, discussed in the previous section,
of separate sensory and decision processes.

Decision processes can be modeled with decision bounds

There is now overwhelming evidence that humans have
multiple learning systems that for the most part are neu-
roanatomically and functionally distinct (Ashby & Maddox,
2005; Eichenbaum & Cohen, 2001; Squire, 1992). Interest-
ingly, the evidence is good that the default decision strategy
of one of these systems can be modeled by decision bounds
that satisfy decisional separability, but the decision strategy
of the other system likely to contribute to the learning of tasks
where GRT is relevant is incompatible with decision bounds.

The most complete description of two of the most im-
portant learning systems is arguably provided by the COVIS
theory of category learning (Ashby, Alfonso-Reese, Turken,
& Waldron, 1998; Ashby, Paul, & Maddox, 2011). COVIS
assumes separate explicit reasoning and procedural-learning
categorization systems that compete for access to response
production. The explicit system uses executive attention and
working memory to select and test simple verbalizable hy-
potheses about category membership. The procedural sys-
tem gradually associates categorization responses with re-
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gions of perceptual space via reinforcement learning. CO-
VIS assumes that explicit categorization is mediated by a
broad neural network that includes the PFC, anterior cin-
gulate, head of the caudate nucleus, and the hippocampus,
whereas the key structures in the procedural-learning system
are the striatum and premotor cortex.

COVIS has been most frequently applied to categorization
tasks that are defined by a many-to-one stimulus-to-response
mapping, whereas GRT is applied most frequently to identi-
fication tasks in which the stimulus-to-response mapping is
one-to-one. Even so, COVIS has been applied to identifica-
tion tasks (Ashby, Waldron, Lee, & Berkman, 2001), GRT
is frequently applied to categorization tasks (Ashby & Mad-
dox, 1994), and there are long-standing proposals that similar
perceptual and decision processes mediate both identification
and categorization (Nosofsky, 1986). For these reasons, ev-
idence about decision processes that underlie COVIS should
be directly applicable to GRT.

The evidence is good that the explicit system is con-
strained to make independent decisions about single stimu-
lus dimensions and that these decisions can be combined in
ways that follow the rules of Boolean algebra. Singling out
a stimulus dimension requires selective attention – an abil-
ity that has been associated with dimensions that are percep-
tually separable (Ashby & Townsend, 1986; Garner, 1974;
Lockhead, 1966; Maddox, 1992; Shepard, 1964). Thus, in
any experiment that uses perceptually separable stimulus di-
mensions, decisional separability is likely to hold – at least
locally – if subjects perform the task explicitly. Later in this
chapter, we describe experimental conditions that promote
explicit processing.

Note that the qualifier “locally” plays a critical role in this
hypothesis. If subjects use explicit strategies then the result-
ing decision bounds should be constructed from piecewise
vertical and horizontal line segments, but this does not guar-
antee that decisional separability will hold overall. For ex-
ample, consider the GRT model of a hypothetical 2 × 2 iden-
tification experiment shown in Figure 1. Here, aib j denotes
the response region associated with stimulus AiB j. Note that
perceptual and decisional separability hold on stimulus di-
mension X2 but not on stimulus dimension X1. Because the
bounds are all constructed from vertical and horizontal line
segments, this decision model is compatible with an explicit
strategy (assuming selective attention to the stimulus dimen-
sions is possible).

Selective attention is thought to depend on the PFC (e.g.,
Miller & Cohen, 2001. Thus, the ability to quickly form de-
cision bounds that satisfy local decisional separability might
be unique to species with a well-developed PFC. Some evi-
dence supports this prediction. First, of course, many studies
have shown that healthy humans learn categories that can be
separated by a one-dimensional decision bound (that satis-
fies decisional separability) far more quickly than categories

Figure 1. A GRT model that satisfies perceptual and deci-
sional separability on dimension X2 but not on dimension X1.

that can be separated by a diagonal bound, even when the
two category structures are exactly equated on all category-
separation statistics (e.g., Ashby & Maddox, 2005). Second,
pigeons learn these two types of category structures equally
well and at exactly the same rate (Smith et al., 2011). Al-
though pigeons do possess brain regions thought to be anal-
ogous to PFC, such structures are not homologous, and it
seems clear that pigeons lack at least some of the cognitive
mechanisms recruited during rule-based learning (see Soto
& Wasserman, 2014). Third, macaque and capuchin mon-
keys, who both have substantial PFCs, show similar perfor-
mance advantages as humans on the one-dimensional cat-
egory structures. This result suggests that the human and
monkey advantage for decisional separability is probably
not language-based, even though rules that satisfy decisional
separability are typically easy to describe verbally. Although
much more data are needed to settle this issue, a tentative first
hypothesis is that selective attention is the critical attribute
that makes one-dimensional rules so easy to learn.

Ashby and Waldron (1999) tested whether or not the pro-
cedural system learns decision bounds. Subjects in this ex-
periment learned two categories of stimuli that varied on
two stimulus dimensions. The stimuli were sampled ran-
domly from non-normal distributions. In the first experi-
ment, the variance-covariance matrices from the two cate-
gories were identical, but the optimal category bound was
quadratic, whereas in the second experiment the opposite
was true – that is, the two variance-covariance matrices were
different, but the optimal bound was linear. Previous research
had shown that when the optimal bound was linear, people
responded as if using linear bounds, and when the optimal
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bound was quadratic, people responded as if using quadratic
bounds. Ashby and Waldron (1999) argued that the only in-
formation signaling which type of bound to use that could be
reliably estimated within a few hundred learning trials was
in the category variances and covariances. Thus, if subjects
learned decision bounds, they should have responded subop-
timally in both experiments – with a linear bound in the first
experiment and a quadratic bound in the second. However, in
both experiments, subjects responded optimally, suggesting
that they were not using decision bounds.

More evidence suggesting that the human procedural sys-
tem does not use decision bounds was reported by Casale,
Roeder, and Ashby (2012). This article reported results from
a series of experiments in which subjects were first trained
on categories that were separated either by a bound that sat-
isfied decisional separability or by a diagonal bound. Af-
ter subjects learned the categories, they were transferred to
novel categories in which perfect performance was possible
with the original training bound. If subjects had learned de-
cision bounds during the original training, then transfer per-
formance should be good because there was nothing new to
learn. In fact, transfer was almost perfect in the decisional
separability conditions, but there was no evidence of any
transfer in the diagonal bound conditions, suggesting that the
procedural system does not learn a global decision rule, but
instead only learns local stimulus-response associations.

Much evidence suggests that procedural learning is me-
diated largely within the striatum, and is facilitated by
a dopamine (DA) mediated reinforcement learning sig-
nal (Ashby & Ennis, 2006; Badgaiyan, Fischman, &
Alpert, 2007; Grafton, Hazeltine, & Ivry, 1995; Jackson
& Houghton, 1995; Knopman & Nissen, 1991). The well-
accepted theory is that positive feedback that follows suc-
cessful behaviors increases phasic DA levels in the stria-
tum, which has the effect of strengthening recently active
synapses, whereas negative feedback causes DA levels to fall
below baseline, which has the effect of weakening recently
active synapses (Houk, Adams, & Barto, 1995). The crit-
ical site of learning within the striatum is thought to be at
synapses between striatal medium spiny neurons and pyra-
midal neurons projecting from visual association areas of
cortex (in the case of GRT experiments with visual stimuli).
The idea is that each medium spiny neuron becomes associ-
ated with a category, so the procedural system learns asso-
ciations between each presented stimulus (via activation of
visual cortical neurons) and the relevant categorical response
(Ashby, Ennis, & Spiering, 2007; Ashby & Waldron, 1999).
These cortical-striatal projections are characterized by mas-
sive convergence – the ratio is somewhere around 10,000-to-
1 (Wilson, 1995).

Based on these anatomical considerations, Ashby and
Waldron (1999; Ashby et al., 2011) proposed the striatal
pattern classifier (SPC) as a model of decision processes in

the procedural learning system. The SPC assumes a high-
resolution perceptual space that maps to a low-resolution de-
cision space. Each perceptual unit is assumed to represent
a different neuron (or group of neurons) in visual cortex and
each decision unit is assumed to represent a different medium
spiny neuron in the striatum. Typical applications might in-
clude 10,000 perceptual units and only a few decision units.
Each perceptual unit has a different preferred stimulus, but
presentation of a stimulus causes a graded pattern of per-
ceptual activation because the tuning of each perceptual unit
is modeled via a radial basis function. Each decision unit
is associated with a response. Initially, the perceptual units
are fully connected to the decision units, but reinforcement
learning changes the strengths of these connections. Com-
putationally, the SPC is similar to the covering map version
of ALCOVE (Kruschke, 1992) and to Anderson’s rational
model (Anderson, 1991).

Using Neuroscience Results to Improve GRT
Applications

The preceding sections suggest that the neuroscience lit-
erature provides considerable support for the assumptions
that underlie GRT. The single caveat concerns the assump-
tion that decision processes can be modeled with (piecewise)
linear or quadratic decision bounds. We saw that the evi-
dence is good that this assumption is valid when subjects are
using PFC-mediated explicit strategies. In fact, under these
conditions, bounds that satisfy local DS should be expected.
However, if subjects use striatal-mediated procedural strate-
gies then the decision bound assumption of GRT is problem-
atic. Thus, one approach that could be used to maximize
the validity of GRT is to adopt experimental methods that
encourage subjects to use explicit decision strategies. If suc-
cessful, an added bonus is that DS is likely to hold, at least
locally. DS greatly simplifies data analyses, both because
it makes numerical integration under bivariate normal distri-
butions easier, but also because it allows stronger inferences
about perceptual separability and independence (e.g., Ashby
& Soto, 2015; Silbert & Thomas, 2013).

It is important to note that encouraging subjects to use de-
cisional separability strategies when they might instead nat-
urally use some procedural strategy could possibly affect the
underlying perceptual representations. For example, Soto
and Ashby (2015) reported that categorization training with a
decisional separability bound increased the perceptual sepa-
rability of novel stimulus dimensions. The extent of such de-
cisional/perceptual interactions is unknown and much more
work is needed, but for the present purposes, several remarks
are in order. First, the pre-training required to increase per-
ceptual separability was fairly extensive, so changes in per-
ceptual separability are unlikely in a one-session experiment
(Soto & Ashby, 2015). Second, such training is unlikely to
affect the perceptual separability of familiar stimulus dimen-
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sions, and third, many GRT analyses, especially those based
on summary statistics, assume decisional separability holds
and therefore are invalid if subjects are using some proce-
dural strategy. For these reasons, researchers might often
want to encourage their subjects to use decisional separabil-
ity strategies.

In fact, a large literature establishes conditions that favor
explicit decision strategies over procedural strategies. Criti-
cal features include the nature of the optimal decision bound,
the instructions given the subjects, and the nature and timing
of the feedback, to name just a few (e.g., Ashby & Maddox,
2005, 2010). For example, Ashby, Waldron, Lee, and Berk-
man (2001) fit the full GRT identification model to data from
two experiments. In both, 9 similar stimuli were constructed
by factorially combining 3 levels of the same 2 stimulus com-
ponents. Thus, in stimulus space, the 9 stimuli had the same
3 × 3 grid configuration in both experiments. In the first
experiment however, subjects were shown this configuration
beforehand and the response keypad had the same 3 × 3 grid
as the stimuli. In the second experiment, the subjects were
not told that the stimuli fell into a grid. Instead, the 9 stimuli
were randomly assigned responses from the first 9 letters of
the alphabet. In the first experiment, where subjects knew
about the grid structure, the best-fitting GRT model assumed
DS on both stimulus dimensions. In the second experiment,
where subjects lacked this knowledge, the decision bounds of
the best-fitting GRT model violated DS. Thus, one interpreta-
tion of these results is that the instructions biased subjects to
use explicit strategies in the first experiment and procedural
strategies in the second experiment.

Therefore, to encourage the use of explicit strategies, sub-
jects should be told about the factorial nature of the stimuli
and the response device should map onto this factorial struc-
ture in a natural way. Furthermore, several other design prin-
ciples should be followed. First, the intertrial interval should
be long enough so that subjects have sufficient time to pro-
cess the meaning of the feedback. Maddox, Ashby, Ing, and
Pickering (2004) showed that a short delay interferes with
explicit but not procedural learning. If subjects are testing
explicit hypotheses about the correct decision strategy then
after error feedback for example, they might decide to reject
their current hypothesis, and then select and implement some
new strategy. These processes require time, attention, and ef-
fort. In contrast, evidence suggests that feedback processing
in the procedural learning system is essentially automatic.

Second, working memory demands should be minimized
(e.g., avoid dual tasking) to ensure that working memory ca-
pacity is available for explicit hypothesis testing. This is
critical because several studies have shown that a simulta-
neous dual task interferes with explicit learning much more
than with procedural learning (Waldron & Ashby, 2001; Zei-
thamova & Maddox, 2006).

Extending GRT to Neuroimaging Data

The perceptual distributions and decision bounds in typ-
ical GRT applications are latent variables in the sense that
they are hypothetical and unobservable. Modern neuroimag-
ing technology however, makes it possible to observe brain
activity with a precision that seemed impossible when GRT
was first developed. For example, the newest fMRI scan-
ners record an indirect measure of neural activation (i.e., the
BOLD response) in as many as 500,000 separate brain lo-
cations at a temporal resolution of better than one second.
The GRT perceptual and decision processes are presumed to
provide summary descriptions of the neural activation that is
mediating the behavior under study. Therefore, at least theo-
retically, fMRI might allow the possibility of observing this
neural activation almost directly. Thus, an exciting area of
future research is to extend GRT applications to neuroimag-
ing data.

There are at least two qualitatively different ways that
GRT could contribute to neuroimaging data analysis. One is
that a variety of different GRT models could be used to make
predictions about how neural activation should change across
stimuli or conditions. The version that provides the best ac-
count of the neuroimaging data would then be supported rel-
ative to its competitors. Within the neuroimaging literature,
mathematical models used in this way are known as encoding
models (e.g., Naselaris, Kay, Nishimoto, & Gallant, 2011).
The encoding approach is similar to typical applications of
GRT, except neuroimaging data are used to test the models
as well as behavioral data. Unlike traditional behavioral ap-
plications however, multiple GRT analyses could be possi-
ble with neuroimaging data. For example, fMRI provides
enough data that different GRT models could be fit to data
from each separate region-of-interest (ROI). For example,
suppose that the best fitting models satisfy perceptual sepa-
rability in early visual cortical areas, but that in some higher-
level visual association area, the best-fitting model violates
perceptual separability. Such a discovery would greatly ad-
vance our understanding of human object perception because
it could begin to address the question of why perceptual sep-
arability fails.

A second approach to a GRT-based analysis of neuroimag-
ing data would be to extract the raw perceptual distributions
and/or decision bounds directly from the neuroimaging data.
Models used in this way are known as decoding models in
the neuroimaging literature (e.g., Naselaris et al., 2011). Of
course, decoding of this type is impossible if only behavioral
data are used, but especially with fMRI, the extra observabil-
ity makes decoding the GRT perceptual distributions, for ex-
ample, a reasonable goal. One advantage of decoding meth-
ods is that they can be distribution free, and therefore make
fewer assumptions than traditional GRT approaches. For ex-
ample, it might be possible to estimate the GRT perceptual
distributions using a nonparametric estimator. This would
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allow for example, nonparametric tests of perceptual separa-
bility. The next two sections describe encoding and decoding
approaches to neuroimaging data analysis in more detail.

Neural encoding models

An encoding model is a formal representation of the re-
lation between sensory stimuli and the response of a single
neuron or a group of neurons. Because neuronal responses
are inherently stochastic, the encoding problem requires
specifying p(r|s), or the probability that neuronal response r
occurs on trials when stimulus s is presented (Pillow, 2007).
An encoding model usually includes a set of parameters,
which we denote via the vector θ, which summarize the in-
formation in the stimulus that is represented by the neural ac-
tivity. These parameters are estimated from the data, so that
p(r|s, θ) is a good approximation to p(r|s). The data required
to fit an encoding model are obtained from experiments pre-
senting a variety of stimuli to participants (typical choices
are white noise stimuli and natural images) and recording
some measure of neural activity in response to the stimuli
(e.g., the fMRI BOLD response). In the case of GRT, one
approach might be to construct two different types of neu-
ronal response models. In sensory models, p(r|s, θ) would
be constructed from the GRT perceptual distribution associ-
ated with the presented stimulus, whereas in decision mod-
els, p(r|s, θ) would be constructed from the decision bounds
(e.g., from the discriminant functions). One could then apply
both model types to each ROI to determine whether the ROI
was a sensory or decision region.

The standard encoding model is constructed from one or
more channels, as shown in Figure 2. Each channel is sen-
sitive to some information about the stimulus, which can be
as simple as the luminance value in a single pixel (e.g., mod-
els of neuronal receptive fields in the early visual system;
for a recent review, see Sharpee, 2013) or as complex as se-
mantic information about an object presented in the stimu-
lus (Huth, Nishimoto, Vu, & Gallant, 2012). Usually, the
responses from several channels are pooled to compute the
response of a readout channel in the next step of process-
ing. This hierarchical scheme can be extended to include as
many levels and channels as necessary, but the most common
choice is the simple structure shown in Figure 2, where the
response of several input channels is known and described
by a fixed, often nonlinear transformation, and the response
of a single readout channel is a linear function of the activ-
ity in the input channels. Models of this type are known as
linearizing encoding models (Naselaris et al., 2011), because
the free parameters (e.g., channel weights) are restricted to
the linear readout portion of the model. For example, in an
encoding model for a voxel located in primary visual cor-
tex, each channel in Figure 2 could be replaced by a single
Gabor wavelet. The response of the channel to an image is
determined by filtering the image using the Gabot wavelet,

Figure 2. A schematic representation of a standard en-
coding model. Figure by F. Soto, shared under creative
commons license at http://figshare.com/articles/Standard-
encoding-model/1385405

which implements a nonlinear mapping from the stimulus to
the channel’s response (see Naselaris et al., 2011). In studies
of object representation, it is possible to include input chan-
nels that encode for even more complex information, such
as the semantic categories to which an object belongs (e.g.,
Huth et al., 2012; Naselaris, Prenger, Kay, Oliver, & Gallant,
2009).

The contribution of each input channel to the response of
the readout channel, represented by a weight w, is usually
unknown. These weights and any other free parameters in
the model must therefore be estimated from data using stan-
dard statistical procedures. To do this, a statistical model
is included that makes it possible to compute the probabil-
ity of a neural observation given the output of the readout
channel, which describes the probability of observing a mea-
sure of neural activity – such as neural spikes, firing rate,
LFP, BOLD signal, etc. – as a function of the activity in the
readout channel and possibly other parameters. The statisti-
cal model is sometimes explicitly stated, which allows maxi-
mum likelihood estimation of the model parameters (Pillow,
2007), but in many cases it is only implicitly assumed to be
described by a normal distribution with mean equal to the
activity of the output channel. This assumption of normality,
which is common in models of fMRI and EEG data, is useful
to estimate the value of the free parameters w through linear
regression (e.g., Garcia, Srinivasan, & Serences, 2013; Kay,
2012; Kay, Naselaris, Prenger, & Gallant, 2008).

A standard encoding model assumes that a small popu-
lation of neurons encodes each stimulus dimension (Pouget,
Dayan, & Zemel, 2003). According to this view, a dimen-
sion is represented by a group of neurons, each with a tuning
function that determines its firing rate to different stimuli,
with peak firing at the value of the preferred stimulus and de-
creased firing as stimuli become more dissimilar to the pre-
ferred stimulus.

In the Figure 2 model, each input channel represents one
neuron or group of identical neurons within this population
code, with different mean firing rates to each of the stimuli
included in the task. Implementing a signal detection theory
model using this formalism is quite simple, only requiring
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the addition of noise in the neurons’ firing rate. This is usu-
ally modeled by a Gaussian distribution, making this a Gaus-
sian population model (Ma, 2010), but other distributions are
possible. Thus, each one of the input channels in Figure 2
would actually be a noisy channel, with responses influenced
by some random component.

The role of the readout channel in this model is to compute
a decision variable, which can then be used as the basis for
a final behavioral choice. Gold and Shadlen (2001) showed
that a simplified version of this framework (with only two
neurons encoding for a dimension) is able to compute a log-
likelihood ratio test for a binary perceptual discrimination, as
in traditional signal detection theory.

Although extending this framework to full GRT mod-
els will require substantial work, very simple modifications
allow implementing at least some tests of GRT concepts.
Imagine an experiment in which stimuli vary along two di-
mensions, each with only two possible values. A good exam-
ple would sets of bars that vary in width (narrow vs. wide)
and orientation (vertical vs. horizontal). The combination of
possible values in both dimensions makes a total of four stim-
uli. The concept of perceptual separability (PS) from GRT
is illustrated in the top row of Figure 3. Each axis in these
models represents a particular stimulus dimension, each cir-
cle represents the bivariate distribution of perceptual effects
produced by a specific stimulus, and the curves at the bot-
tom represent the marginal distribution of perceptual effects
along a specific dimension. To the left we see a GRT model
in which PS holds for the orientation dimension. In this PS
Model, stimuli that have the same orientation have equivalent
marginal perceptual distributions in the x-axis. To the right
we see a GRT model in which PS does not hold for the orien-
tation dimension. In this No-PS Model, stimuli that have the
same orientation do not have equivalent marginal perceptual
distributions. Note how the definition of PS in GRT refers
only to marginal distributions of perceptual effects. Because
these marginal distributions are unidimensional, they can be
directly modeled using the probabilistic population coding
scheme explained earlier.

An example of simple encoding models for PS and failure
of PS is shown in the bottom row of Figure 3. To the left we
see an encoding model implementing PS. In this model, there
is a single channel that encodes both vertical bar stimuli,
completely ignoring information about bar width. Similarly,
there is a second single channel that encodes both horizontal
bar stimuli, also ignoring information about bar width. The
orientation dimension is thus encoded in this model sepa-
rately from the width dimension: the representation of orien-
tation is invariant to changes in width. The encoding model
shown to the right implements a failure of PS. In this case,
there are separate channels encoding wide vertical bars and
narrow vertical bars. There are also separate channels en-
coding wide horizontal bars and narrow horizontal bars. The

representation of orientation in this model is not separable
from width, but it rather depends on width.Remember that
encoding models are fitted to neural data using traditional
statistical procedures. A simple test of perceptual separabil-
ity of neural representations would require fitting a PS Model
and a No-PS Model, and performing model fit and selection
on those models. In our example, we could show participans
the four oriented bar stimuli while they are being scanned in
an MRI machine. Imagine that we are particularly interested
in the representation of orientation in primary visual cortex.
Figure 4a shows a sequence of stimuli that could be shown to
participants in such an hypothetical experiment. Assume, for
dydactical purposes, that the representation of orientation in
primary visual cortex is not separable from the representation
of width, with neurons in different voxels encoding the same
orientation for different widths. This could produce BOLD
responses like those observed in Figure 4b. Voxel 1 is clearly
responding only to vertical bars that are thin, whereas voxel
2 is responding only to vertical bars that are wide. If both the
PS Model and No-PS Model are fitted to these data, then it
is likely that the No-PS model would offer a better fit, as this
model could explain the data in voxel 1 by having a strong
weight for the channel encoding the combination of vertical
and thin and low weights for all other channels, and it could
explain the data in voxel 2 by having a strong weight for
the channel encoding the combination of vertical and thick
and low weights for all other channels. The predictions of
this model could be similar to those observed in Figure 4d.
On the other hand, the PS Model would in both cases assign
a strong weight to the channel that encodes “vertical” and
a low weight to the channel that encodes “horizontal.” As
shown in Figure 4c, the model would correctly predict the
responses of both voxels in half of the trials, but it would also
incorrectly predict responses in the other half of the trials in
which no response is observed. Model comparison should
thus yield the No-PS model a better fit to the data.

Throughout this example, we have assumed the simplest
possible encoding model in which each channel represents
either the presence or absence of a feature. Such a model
should help to identify violations of PS such as that shown in
the top-right of Figure 3, in which the means of marginal dis-
tributions are displaced, but it would not identify all possible
violations of PS. Better encoding models could be developed
if we could get estimates of the perceptual effects of a stimu-
lus in each trial. One way to do this is by fitting GRT models
to response time data (Maddox & Ashby, 1996) and inverting
the model to obtain estimates of perceptual effects (under the
assumption of decisional separability; for an introduction to
these basic concepts from GRT see ).

Neural decoding

The term neural decoding is used in the computational
neuroscience literature to refer both to a series of methods
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Figure 3. GRT models implementing perceptual separability (PS Model, left column) and failure of percep-
tual separability (No-PS Model, right column). The top row represents traditional GRT models and the bot-
tom row represents encoding GRT models. Figure by F. Soto, shared under creative commons license at
http://figshare.com/articles/GRT_encoding_models/1547914

used by researchers to extract information about the task
from neural data (Naselaris et al., 2011; Quiroga & Panz-
eri, 2009) and to the mechanisms used by readout neurons to
extract similar information, which is later used for decision
making and other cognitive processes (Gold & Ding, 2013;
Pouget et al., 2003). Referring back to Figure 2, we can think
of the input channels as implicitly encoding a particular vari-
able, which is then decoded by the readout channel.

Researchers have decoded many forms of information
from neural data, ranging from abstract properties, such as
an object’s identity or its membership to a particular class
(e.g., Hung et al., 2005; Kriegeskorte, Formisano, Sorger,
& Goebel, 2007; Li, Cox, Zoccolan, & DiCarlo, 2009;
Said, Moore, Engell, Todorov, & Haxby, 2010; Soto, Wald-
schmidt, Helie, & Ashby, 2013), to the more concrete recon-
struction of the actual images presented during an experiment
(e.g., Miyawaki et al., 2008; Naselaris et al., 2009; Nishi-
moto et al., 2011; Thirion et al., 2006). The methods used
to extract information are also highly variable, and include
a variety of statistical learning algorithms (for a review, see
Pereira, Mitchell, & Botvinick, 2009 and information theo-
retical measures (see Quiroga & Panzeri, 2009. Simple linear
classification and regression algorithms are the most com-

monly used decoding methods, a practice that rests on the
assumption that the mapping from observed neural activity
to stimulus information is linear (Naselaris et al., 2011), in
the same fashion as in the encoding models reviewed in the
previous section. A theoretical justification for this choice is
that real neurons integrate information from upstream neu-
rons through a mechanism akin to a weighted sum with a
threshold, in a similar manner to a linear classifier (Li et
al., 2009). In contrast, a nonlinear classifier could produce
successful classification from activity in a region that does
not explicitly encode the features of interest (e.g., the retina;
Naselaris et al., 2011). Furthermore, in practice it is usually
the case that the decoding accuracy of nonlinear classifiers
does not improve substantially over that of linear classifiers
(e.g., Hung et al., 2005; Pereira et al., 2009).

Neural decoding using linear models is similar in goal to
encoding models that represent information about a single
stimulus dimension (Kay, 2012). In both cases, the goal is
to show that a particular stimulus dimension is encoded by
a neuronal population. Whereas an encoding model uses
the dimension of interest to make predictions of neural re-
sponses, a linear decoding model uses the measured activity
to recover the dimension of interest, and fitting the model
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Figure 4. Hypothetical fMRI experiment testing perceptual separability of orientation from width; (a)
shows the sequence of stimuli shown and (b) shows the BOLD response measured in two voxels of in-
terest; (c) and (d) show the predictions of encoding models implementing perceptual separability and fail-
ure of perceptual separability, respectively. Figure by F. Soto, shared under creative commons license at
http://figshare.com/articles/Fitting_data_from_an_fMRI_experiment_with_GRT_encoding_models/1547915

amounts to finding a direction in the activity space that can
best describe the differences across stimuli on the dimension
of interest.

This suggests a method, which is schematized in Figure 5,
to extend neural decoding procedures to test for separability
of neural representations. To understand how this method
work, lets return to the example of a hypothetical experiment
presented in the previous section, in which participants are
scanned in the MRI while being presented with a series of
oriented bar stimuli (see Figure 4a), with the goal of under-
standing whether the representation of orientation is separa-
ble from the representation of width in primary visual cortex.
Assume that we get estimates of neural activity in each trial
from two voxels located in our region of interest. Such esti-
mates can be obtained by simply using the BOLD response
measured four seconds after stimulus onset, by averaging the
BOLD response during a given period after stimulus onset,
or by other, more complex methods. The estimates of activ-
ity could be represented in a two-dimensional voxel space,
as shown at the top of Figure 5.

Each point here represents activity on a different trial, with
different colors representing different stimuli that have been
repeatedly presented across the experiment. If our goal was
to decode bar orientation from these two voxels, a traditional
decoding analysis would involve using a linear classifier to
find the line in this space that best separates trials on which
vertical bars were shown from trials on which horizontal bars
were shown. This classification bound is represented by the
dotted line in Figure 5. The line orthogonal to the classi-
fication bound represents the direction in voxel space that
best discriminates one orientation from the other (that is, the
line along which the points corresponding to vertical bars
are maximally separated from the points corresponding to
horizontal bars). Thus, it is reasonable to assume that this
is the direction in this specific voxel space along which ori-
entation is encoded. If we take all the observed data points
and project them onto this "orientation" dimension, the two
distributions of points for a given value of orientation (e.g.,
“vertical”), each corresponding to a different value of width,
can be compared to one another. Under the hypothesis of PS,
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Figure 5. A schematic representation of a test of sepa-
rability of neural representations, implemented as an ex-
tension to traditional linear decoding procedures. Fig-
ure by F. A. Soto, shared under creative commons li-
cense at http://figshare.com/articles/Test-of-separability-
of-neural-representations/1385406

these two sets of points should come from the same marginal
distribution. There is a variety of statistical tests in the liter-
ature that allow to test this hypothesis, with the most popu-
lar being the two-sample Kolmogorov-Smirnov test, but with
more statistically powerful alternatives being available. We
have recently used such a test to study separability of the
neural representations of identity and emotional expression
of human faces in an fMRI study (Soto, Vucovich, & Ashby,
in preparation).

Conclusions

GRT has been exceptionally successful. But to date, vir-
tually all applications have been purely behavioral. When
GRT was first developed in 1986, this behavioral focus was
necessary because little was known about the architecture
and functioning of the neural circuits that implement the per-
ceptual and decision processes hypothesized by GRT. Thirty
years later however, this picture has changed dramatically
and now many neuroscience results speak to the validity of
GRT and suggest ways to improve its application. In addi-
tion, new neuroimaging technologies have created massive
and complex data sets that beg for sophisticated new quanti-
tative analyses. FMRI data analysis, for example, has been
dominated by the general linear model – a statistical method
that was never intended as a model of psychological process.
GRT, with its extensive validation as a general model of per-
ceptual and decision processes, therefore offers promising
new tools for neuroimaging data analysis.

References

Abbott, L., Rolls, E. T., & Tovee, M. J. (1996). Representational
capacity of face coding in monkeys. Cerebral Cortex, 6(3), 498–
505.

Amazeen, E. L., & DaSilva, F. (2005). Psychophysical test for the
independence of perception and action. Journal of Experimental
Psychology: Human Perception and Performance, 31(1), 170–
182.

Amitay, S., Guiraud, J., Sohoglu, E., Zobay, O., Edmonds, B. A.,
Zhang, Y. X., & Moore, D. R. (2013, July). Human decision
making based on variations in internal noise: an EEG study.
PLoS ONE, 8(7), e68928. doi: 10.1371/journal.pone.0068928

Amitay, S., Irwin, A., & Moore, D. R. (2006, November). Dis-
crimination learning induced by training with identical stimuli.
Nature neuroscience, 9(11), 1446–1448. doi: 10.1038/nn1787

Amitay, S., Zhang, Y. X., Jones, P. R., & Moore, D. R. (2014).
Perceptual learning: Top to bottom. Vision Research, 99, 69–77.
doi: 10.1016/j.visres.2013.11.006

Anderson, J. R. (1991). The adaptive nature of human categoriza-
tion. Psychological Review, 98(3), 409–429.

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron,
E. M. (1998). A neuropsychological theory of multiple systems
in category learning. Psychological Review, 105(3), 442–481.

Ashby, F. G., & Ennis, J. M. (2006). The role of the basal ganglia
in category learning. Psychology of Learning and Motivation,
46, 1–36.

Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neuro-
biological theory of automaticity in perceptual categorization.
Psychological Review, 114(3), 632–656.

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception
and categorization of multidimensional stimuli. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 14,
33–53.

Ashby, F. G., & Lee, W. W. (1993). Perceptual variability as a fun-
damental axiom of perceptual science. Advances in psychology,
99, 369–399.

Ashby, F. G., & Maddox, W. T. (1994). A response time theory of
separability and integrality in speeded classification. Journal of
Mathematical Psychology, 38(4), 423–466.

Ashby, F. G., & Maddox, W. T. (2005). Human category learning.
Annual Review of Psychology, 56, 149–178.

Ashby, F. G., & Maddox, W. T. (2010). Human category learning
2.0. Annals of the New York Academy of Sciences, 1224, 147–
161.

Ashby, F. G., Paul, E. J., & Maddox, W. T. (2011). COVIS. In
E. M. Pothos & A. Wills (Eds.), Formal approaches in catego-
rization (pp. 65–87). New York: Cambridge University Press.

Ashby, F. G., & Perrin, N. A. (1988). Toward a unified theory of
similarity and recognition. Psychological Review, 95(1), 124–
150.

Ashby, F. G., Prinzmetal, W., Ivry, R., & Maddox, W. T. (1996). A
formal theory of feature binding in object perception. Psycho-
logical Review, 103(1), 165–192.

Ashby, F. G., & Soto, F. A. (2015). Multidimensional signal de-
tection theory. In J. Busemeyer, J. T. Townsend, Z. J. Wang, &
A. Eidels (Eds.), Oxford handbook of computational and math-
ematical psychology (pp. 13–34). New York: Oxford University
Press.



14 NEURAL BASIS OF GRT

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual
independence. Psychological Review, 93(2), 154–179.

Ashby, F. G., & Waldron, E. M. (1999). On the nature of implicit
categorization. Psychonomic Bulletin& Review, 6(3), 363–378.

Ashby, F. G., Waldron, E. M., Lee, W. W., & Berkman, A. (2001).
Suboptimality in human categorization and identification. Jour-
nal of Experimental Psychology: General, 130(1), 77–96.

Badgaiyan, R. D., Fischman, A. J., & Alpert, N. M. (2007). Striatal
dopamine release in sequential learning. Neuroimage, 38, 549–
556.

Banks, W. P. (2000). Recognition and source memory as multivari-
ate decision processes. Psychological Science, 11(4), 267–273.

Barlow, H. B. (1957). Increment thresholds at low intensities con-
sidered as signal/noise discriminations. The Journal of Physiol-
ogy, 136(3), 469–488.

Barlow, H. B. (1977). Retinal and central factors in human vision
limited by noise. In H. B. Barlow & P. Fatt (Eds.), Vertebrate
photoreception (p. 337-358). New York: Academic Press.

Blaha, L. M., Silbert, N. H., & Townsend, J. T. (2011). A gen-
eral recognition theory study of race adaptation. Proceedings of
Fechner Day, 27(1), 95–100.

Bogacz, R., Hu, P. T., Holmes, P. J., & Cohen, J. D. (2010, May).
Do humans produce the speed–accuracy trade-off that maxi-
mizes reward rate? The Quarterly Journal of Experimental Psy-
chology, 63(5), 863–891. doi: 10.1080/17470210903091643

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S.,
& Movshon, J. A. (1996). A relationship between behavioral
choice and the visual responses of neurons in macaque MT. Vi-
sual Neuroscience, 13(01), 87–100.

Brody, C. D., Hernández, A., Zainos, A., & Romo, R. (2003). Tim-
ing and neural encoding of somatosensory parametric working
memory in macaque prefrontal cortex. Cerebral Cortex, 13(11),
1196–1207.

Casale, M. B., Roeder, J. L., & Ashby, F. G. (2012). Analogi-
cal transfer in perceptual categorization. Memory & Cognition,
40(3), 434–449.

Chen, M.-Y., Jimura, K., White, C. N., Maddox, W. T., & Pol-
drack, R. A. (2015). Multiple brain networks contribute to the
acquisition of bias in perceptual decision-making. Frontiers in
neuroscience, 9.

Cohen, D. J. (1997). Visual detection and perceptual independence:
Assessing color and form. Perception & Psychophysics, 59(4),
623–635.

De Baene, W., Ons, B., Wagemans, J., & Vogels, R. (2008). Effects
of category learning on the stimulus selectivity of macaque in-
ferior temporal neurons. Learning & Memory, 15(9), 717–727.

DeCarlo, L. T. (2003). Source monitoring and multivariate signal
detection theory, with a model for selection. Journal of Mathe-
matical Psychology, 47(3), 292–303.

Demeyer, M., Zaenen, P., & Wagemans, J. (2007). Low-level
correlations between object properties and viewpoint can cause
viewpoint-dependent object recognition. Spatial Vision, 20(1),
79–106.

Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to
conscious recollection: Memory systems of the brain. Oxford
University Press.

Faisal, A. A. (2012). Noise in Neurons and Other Constraints. In
N. L. Novère (Ed.), Computational Systems Neurobiology (pp.

227–257). Dordrecht, Netherlands: Springer Netherlands.
Faisal, A. A., & Laughlin, S. B. (2007, May). Stochastic simula-

tions on the reliability of action potential propagation in thin ax-
ons. PLoS Computational Biology, 3(5), e79. doi: 10.1371/jour-
nal.pcbi.0030079

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008, April). Noise
in the nervous system. Nature Reviews Neuroscience, 9(4), 292–
303. doi: 10.1038/nrn2258

Farris, C., Viken, R. J., & Treat, T. A. (2010). Perceived association
between diagnostic and non-diagnostic cues of women’s sexual
interest: General recognition theory predictors of risk for sexual
coercion. Journal of Mathematical Psychology, 54(1), 137–149.

Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J., Brown,
S., Wagenmakers, E. J., . . . Turner, R. (2010). Cortico-striatal
connections predict control over speed and accuracy in percep-
tual decision making. Proceedings of the National Academy of
Sciences, 107(36), 15916–15920.

Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., Von Cramon,
D. Y., Ridderinkhof, K. R., & Wagenmakers, E. J. (2008). Stria-
tum and pre-SMA facilitate decision-making under time pres-
sure. Proceedings of the National Academy of Sciences, 105(45),
17538–17542.

Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K.
(2003). A comparison of primate prefrontal and inferior tem-
poral cortices during visual categorization. The Journal of Neu-
roscience, 23(12), 5235–5246.

Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for
visual features of objects in monkey inferotemporal cortex. Na-
ture, 360(6402), 343–346.

Garcia, J. O., Srinivasan, R., & Serences, J. T. (2013). Near-real-
time feature-selective modulations in human cortex. Current Bi-
ology, 23(6), 515–522.

Garner, W. R. (1974). The processing of information and structure.
New York: Wiley.

Geisler, W. S. (1989). Sequential ideal-observer analysis of visual
discriminations. Psychological Review, 96(2), 267–314.

Gilbert, C. D., & Sigman, M. (2007). Brain states: top-down influ-
ences in sensory processing. Neuron, 54(5), 677–696.

Giordano, B. L., Visell, Y., Yao, H.-Y., Hayward, V., Cooperstock,
J. R., & McAdams, S. (2012). Identification of walked-upon
materials in auditory, kinesthetic, haptic, and audio-haptic con-
ditionsa). The Journal of the Acoustical Society of America,
131(5), 4002–4012.

Gold, J. I., & Ding, L. (2013, April). How mecha-
nisms of perceptual decision-making affect the psychomet-
ric function. Progress in Neurobiology, 103, 98–114. doi:
10.1016/j.pneurobio.2012.05.008

Gold, J. I., & Shadlen, M. N. (2001). Neural computations that
underlie decisions about sensory stimuli. Trends in Cognitive
Sciences, 5(1), 10–16.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision
making. Annual Review of Neuroscience, 30(1), 535–574.

Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1995). Functional
mapping of sequence learning in normal humans. Journal of
Cognitive Neuroscience, 7, 497–510.

Hanks, T. D., Ditterich, J., & Shadlen, M. N. (2006, May). Mi-
crostimulation of macaque area LIP affects decision-making in



NEURAL BASIS OF GRT 15

a motion discrimination task. Nature Neuroscience, 9(5), 682–
689. doi: 10.1038/nn1683

Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G.
(2004, October). A general mechanism for perceptual decision-
making in the human brain. Nature, 431(7010), 859–862. doi:
10.1038/nature02966

Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiol-
ogy, methodology, and behavior. Frontiers in Neuroscience, 8,
150. doi: 10.3389/fnins.2014.00150

Hernández, A., Zainos, A., & Romo, R. (2000). Neuronal correlates
of sensory discrimination in the somatosensory cortex. Proceed-
ings of the National Academy of Sciences, 97(11), 6191–6196.

Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of
how the basal ganglia generate and use neural signals that pre-
dict reinforcement. In J. C. Houk, J. L. Davis, & D. G. Beiser
(Eds.), Models of information processing in the basal ganglia
(pp. 249–270). Cambridge, MA: MIT Press.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005).
Fast readout of object identity from macaque inferior temporal
cortex. Science, 310(5749), 863–866.

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012,
December). A continuous semantic space describes the
representation of thousands of object and action categories
across the human brain. Neuron, 76(6), 1210–1224. doi:
10.1016/j.neuron.2012.10.014

Jackson, S., & Houghton, G. (1995). Sensorimotor selection and
the basal ganglia: A neural network model. In J. C. Houk,
J. L. Davis, & D. G. Beiser (Eds.), Models of information pro-
cessing in the basal ganglia (pp. 337–368). Cambridge, MA:
MIT Press.

Kahnt, T., Grueschow, M., Speck, O., & Haynes, J. D. (2011). Per-
ceptual learning and decision-making in human medial frontal
cortex. Neuron, 70(3), 549–559.

Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual
attention in the human cortex. Annual Review of Neuroscience,
23(1), 315–341.

Kay, K. N. (2012). Understanding visual representation by devel-
oping receptive-field models. In N. Kriegeskorte & G. Kreiman
(Eds.), Visual population codes: Towards a common multivari-
ate framework for cell recording and functional imaging. Cam-
bridge, MA: MIT Press.

Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008,
March). Identifying natural images from human brain activity.
Nature, 452(7185), 352–355. doi: 10.1038/nature06713

Kelly, S. P., & O’Connell, R. G. (2013). Internal and external influ-
ences on the rate of sensory evidence accumulation in the human
brain. The Journal of Neuroscience, 33(50), 19434–19441.

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded inte-
gration in parietal cortex underlies decisions even when viewing
duration is dictated by the environment. The Journal of Neuro-
science(12), 3017–3029.

Kleppe, I. C., & Robinson, H. P. C. (2006). Correlation entropy
of synaptic input-output dynamics. Physical Review E, 74(4),
041909.

Knopman, D., & Nissen, M. J. (1991). Procedural learning is
impaired in huntington’s disease: Evidence from the serial re-
action time task. Neuropsychologia, 29(3), 245–254. doi:
http://dx.doi.org/10.1016/0028-3932(91)90085-M

Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007).
Individual faces elicit distinct response patterns in human ante-
rior temporal cortex. Proceedings of the National Academy of
Sciences, 104(51), 20600–20605.

Kruschke, J. K. (1992). Alcove: An exemplar-based connectionist
model of category learning. Psychological Review, 99(1), 22–
44.

Kveraga, K., Ghuman, A. S., & Bar, M. (2007). Top-down predic-
tions in the cognitive brain. Brain and cognition, 65(2), 145–
168.

Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002,
July). A neural correlate of response bias in monkey caudate nu-
cleus. Nature, 418(6896), 413–417. doi: 10.1038/nature00892

Law, C. T., & Gold, J. I. (2008, April). Neural correlates of percep-
tual learning in a sensory-motor, but not a sensory, cortical area.
Nature Neuroscience, 11(4), 505–513. doi: 10.1038/nn2070

Law, C. T., & Gold, J. I. (2010). Shared mechanisms of perceptual
learning and decision making. Topics in Cognitive Science, 2(2),
226–238.

Li, N., Cox, D. D., Zoccolan, D., & DiCarlo, J. J. (2009). What
response properties do individual neurons need to underlie posi-
tion and clutter "invariant" object recognition? Journal of Neu-
rophysiology, 102(1), 360–376.

Lockhead, G. R. (1966). Effects of dimensional redundancy on vi-
sual discrimination. Journal of Experimental Psychology, 72(1),
94–104.

Louw, S., Kappers, A. M., & Koenderink, J. J. (2002). Haptic
discrimination of stimuli varying in amplitude and width. Ex-
perimental Brain Research, 146(1), 32–37.

Ma, W. J. (2010, October). Signal detection theory, uncertainty, and
Poisson-like population codes. Vision Research, 50(22), 2308–
2319. doi: 10.1016/j.visres.2010.08.035

Maddox, W. T. (1992). Perceptual and decisional separability. In
F. G. Ashby (Ed.), Multidimensional models of perception and
cognition (pp. 147–180). Hillsdale, NJ: Lawrence Erlbaum As-
sociates, Inc.

Maddox, W. T., & Ashby, F. G. (1993). Comparing decision
bound and exemplar models of categorization. Perception &
Psychophysics, 53(1), 49–70.

Maddox, W. T., & Ashby, F. G. (1996). Perceptual separability, de-
cisional separability, and the identification–speeded classifica-
tion relationship. Journal of Experimental Psychology: Human
perception and performance, 22(4), 795.

Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. (2004).
Disrupting feedback processing interferes with rule-based but
not information-integration category learning. Memory & Cog-
nition, 32(4), 582–591.

Maddox, W. T., Ashby, F. G., & Waldron, E. M. (2002). Multi-
ple attention systems in perceptual categorization. Memory &
Cognition, 30(3), 325–339.

Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Pog-
gio, T. (2008). Dynamic population coding of category infor-
mation in inferior temporal and prefrontal cortex. Journal of
Neurophysiology, 100(3), 1407–1419.

Micheyl, C., McDermott, J. H., & Oxenham, A. J. (2009, Jan-
uary). Sensory noise explains auditory frequency discrimination
learning induced by training with identical stimuli. Perception
& Psychophysics, 71(1), 5–7. doi: 10.3758/APP.71.1.5



16 NEURAL BASIS OF GRT

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of pre-
frontal cortex function. Annual Review of Neuroscience, 24(1),
167–202.

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M. A., Morito, Y.,
Tanabe, H. C., . . . Kamitani, Y. (2008, December). Visual image
reconstruction from human brain activity using a combination of
multiscale local image decoders. Neuron, 60(5), 915–929. doi:
10.1016/j.neuron.2008.11.004

Naselaris, T., Kay, K. N., Nishimoto, S., & Gallant, J. L. (2011).
Encoding and decoding in fMRI. Neuroimage, 56(2), 400–410.

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L.
(2009). Bayesian reconstruction of natural images from human
brain activity. Neuron, 63(6), 902–915.

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B.,
& Gallant, J. L. (2011). Reconstructing visual experiences
from brain activity evoked by natural movies. Current Biology,
21(19), 1641–1646.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of Experi-
mental Psychology: General, 115, 39–57.

O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A
supramodal accumulation-to-bound signal that determines per-
ceptual decisions in humans. Nature Neuroscience, 15(12),
1729–1735.

Op de Beeck, H., Wagemans, J., & Vogels, R. (2001). Inferotempo-
ral neurons represent low-dimensional configurations of param-
eterized shapes. Nature Neuroscience, 4(12), 1244–1252.

Pereira, F., Mitchell, T., & Botvinick, M. (2009, March). Machine
learning classifiers and fMRI: A tutorial overview. Neuroimage,
45(1), S199–S209. doi: 16/j.neuroimage.2008.11.007

Pillow, J. (2007). Likelihood-based approaches to modeling the
neural code. In K. Doya, S. Ishii, A. Pouget, & R. P. N. Rao
(Eds.), Bayesian brain: Probabilistic approaches to neural cod-
ing (pp. 53–70). Cambridge, MA: MIT Press.

Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and com-
putation with population codes. Annual Review of Neuroscience,
26(1), 381–410.

Purushothaman, G., & Bradley, D. C. (2005, January). Neural pop-
ulation code for fine perceptual decisions in area MT. Nature
Neuroscience, 8(1), 99–106. doi: 10.1038/nn1373

Quiroga, R. Q., & Panzeri, S. (2009, March). Extracting informa-
tion from neuronal populations: information theory and decod-
ing approaches. Nature Reviews Neuroscience, 10(3), 173–185.
doi: 10.1038/nrn2578

Robson, J. G. (1975). Receptive fields: Neural representation of the
spatial and intensive attributes of the visual image. Handbook of
Perception, 5, 81–116.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in
the lateral intraparietal area during a combined visual discrimi-
nation reaction time task. The Journal of Neuroscience, 22(21),
9475–9489.

Rolls, E. T. (2009). The neurophysiology and computational mech-
anisms of object representation. In S. Dickinson, M. J. Tarr,
A. Leonardis, & B. Schiele (Eds.), Object categorization: Com-
puter and human vision perspectives.

Rolls, E. T., Treves, A., & Tovee, M. J. (1997). The representational
capacity of the distributed encoding of information provided by
populations of neurons in primate temporal visual cortex. Ex-

perimental Brain Research, 114(1), 149–162.
Romo, R., Hernández, A., & Zainos, A. (2004). Neuronal corre-

lates of a perceptual decision in ventral premotor cortex. Neuron,
41(1), 165–173.

Rotello, C. M., Macmillan, N. A., & Reeder, J. A. (2004).
Sum-difference theory of remembering and knowing: a two-
dimensional signal-detection model. Psychological Review,
111(3), 588–616.

Said, C. P., Moore, C. D., Engell, A. D., Todorov, A., & Haxby,
J. V. (2010, May). Distributed representations of dynamic facial
expressions in the superior temporal sulcus. Journal of Vision,
10(5). doi: 10.1167/10.5.11

Salin, P.-A., & Bullier, J. (1995). Corticocortical connections in the
visual system: Structure and function. Physiological Reviews,
75(1), 107–154.

Seger, C. A., & Miller, E. K. (2010). Category learning in the brain.
Annual Review of Neuroscience, 33, 203–219.

Shadlen, M. N., & Newsome, W. T. (1998, May). The variable dis-
charge of cortical neurons: implications for connectivity, com-
putation, and information coding. The Journal of Neuroscience,
18(10), 3870–3896.

Sharpee, T. O. (2013). Computational identification of receptive
fields. Annual Review of Neuroscience, 36, 103–120.

Shepard, R. N. (1964). Attention and the metric structure of the
stimulus space. Journal of Mathematical Psychology, 1(1), 54–
87.

Sigala, N. (2004). Visual categorization and the inferior temporal
cortex. Behavioural Brain Research, 149(1), 1–7.

Sigala, N., & Logothetis, N. K. (2002). Visual categorization
shapes feature selectivity in the primate temporal cortex. Nature,
415(6869), 318–320.

Silbert, N. H. (2012). Syllable structure and integration of voic-
ing and manner of articulation information in labial consonant
identification. The Journal of the Acoustical Society of America,
131(5), 4076–4086.

Silbert, N. H., & Thomas, R. D. (2013). Decisional separabil-
ity, model identification, and statistical inference in the general
recognition theory framework. Psychonomic Bulletin & Review,
20(1), 1–20.

Silbert, N. H., Townsend, J. T., & Lentz, J. J. (2009). Independence
and separability in the perception of complex nonspeech sounds.
Attention, Perception, & Psychophysics, 71(8), 1900–1915.

Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering,
B., Cook, R. G., & Grace, R. C. (2011). Pigeons’ categoriza-
tion may be exclusively nonanalytic. Psychonomic Bulletin &
Review, 18(2), 414–421.

Soto, F. A., & Ashby, F. G. (2015). Categorization training in-
creases the perceptual separability of novel dimensions. Cogni-
tion, 139, 105–129.

Soto, F. A., Vucovich, L., & Ashby, F. G. (in preparation). Testing
the independence of neural representations of face identity and
expression through multidimensional signal detection theory.

Soto, F. A., Vucovich, L., Musgrave, R., & Ashby, F. G. (2014).
General recognition theory with individual differences: a new
method for examining perceptual and decisional interactions
with an application to face perception. Psychonomic Bulletin
& Review, 22(1), 88–111.



NEURAL BASIS OF GRT 17

Soto, F. A., Waldschmidt, J. G., Helie, S., & Ashby, F. G.
(2013). Brain activity across the development of automatic
categorization: A comparison of categorization tasks using
multi-voxel pattern analysis. Neuroimage, 71, 284–897. doi:
10.1016/j.neuroimage.2013.01.008

Soto, F. A., & Wasserman, E. A. (2014). Mechanisms of object
recognition: What we have learned from pigeons. Frontiers in
Neural Circuits, 8.

Squire, L. R. (1992). Declarative and nondeclarative memory: Mul-
tiple brain systems supporting learning and memory. Journal of
Cognitive Neuroscience, 4(3), 232–243.

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual
Review of Neuroscience, 19(1), 109–139.

Tanaka, K. (2004). Inferotemporal response properties. The visual
neurosciences, 1151.

Thirion, B., Duchesnay, E., Hubbard, E., Dubois, J., Poline,
J. B., Lebihan, D., & Dehaene, S. (2006, December). In-
verse retinotopy: Inferring the visual content of images from
brain activation patterns. Neuroimage, 33(4), 1104–1116. doi:
10.1016/j.neuroimage.2006.06.062

Thomas, E., Van Hulle, M. M., & Vogels, R. (2001). Encoding of
categories by noncategory-specific neurons in the inferior tem-
poral cortex. Journal of Cognitive Neuroscience, 13(2), 190–
200.

Thomas, R. D. (2001). Perceptual interactions of facial dimen-
sions in speeded classification and identification. Perception &
Psychophysics, 63(4), 625–650.

Thorpe, S. J., & Fabre-Thorpe, M. (2001). Seeking categories in
the brain. Science, 291, 260–262.

Tsunoda, K., Yamane, Y., Nishizaki, M., & Tanifuji, M. (2001).
Complex objects are represented in macaque inferotemporal cor-
tex by the combination of feature columns. Nature Neuro-
science, 4(8), 832–838.

Van Vugt, M. K., Simen, P., Nystrom, L. E., Holmes, P., & Co-
hen, J. D. (2012). EEG oscillations reveal neural correlates of
evidence accumulation. Frontiers in Neuroscience, 6, 106.

Vogels, R. (1999). Categorization of complex visual images by
rhesus monkeys. part 2: single-cell study. European Journal of
Neuroscience, 11(4), 1239–1255.

Waldron, E. M., & Ashby, F. G. (2001). The effects of concur-
rent task interference on category learning: Evidence for multi-
ple category learning systems. Psychonomic Bulletin & Review,
8(1), 168–176.

Wang, G., Tanifuji, M., & Tanaka, K. (1998). Functional architec-
ture in monkey inferotemporal cortex revealed by in vivo optical
imaging. Neuroscience Research, 32(1), 33–46.

Wenger, M. J., & Ingvalson, E. M. (2002). A decisional compo-
nent of holistic encoding. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 28(5), 872–892.

White, J. A., Rubinstein, J. T., & Kay, A. R. (2000). Channel noise
in neurons. Trends in neurosciences, 23(3), 131–137.

Wilson, C. J. (1995). The contribution of cortical neurons to the fir-
ing pattern of striatal spiny neurons. In J. C. Houk, J. L. Davis,
& D. G. Beiser (Eds.), Models of information processing in the
basal ganglia (pp. 29–50). Cambridge, MA: Bradford.

Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and
methods, quantitative data and formulas. New York: Wiley.

Yamane, Y., Tsunoda, K., Matsumoto, M., Phillips, A. N., & Tani-
fuji, M. (2006). Representation of the spatial relationship among
object parts by neurons in macaque inferotemporal cortex. Jour-
nal of Neurophysiology, 96(6), 3147–3156.

Zeithamova, D., & Maddox, W. T. (2006). Dual-task interference
in perceptual category learning. Memory & Cognition, 34(2),
387–398.



18 NEURAL BASIS OF GRT

Author Notes

Preparation of this chapter was supported in part by
NIMH grant 2R01MH063760. Correspondence concern-
ing this chapter should be addressed to F. Gregory Ashby,

Department of Psychological & Brain Sciences, Univer-
sity of California, Santa Barbara, CA 93106. E-mail:
ashby@psych.ucsb.edu.


