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Compound generalization and dimensional generalization are traditionally studied independently by
different groups of researchers, who have proposed separate theories to explain results from each area.
A recent extension of Shepard’s rational theory of dimensional generalization allows an explanation
of data from both areas within a single framework. However, the conceptualization of dimensional
integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his
original theory (the correlation hypothesis). Here, we report two experiments that test differential
predictions of these two notions of integrality. Each experiment takes a design from compound
generalization and translates it into a design for dimensional generalization by replacing discrete stim-
ulus components with dimensional values. Experiment 1 showed that an effect analogous to summation
is found in dimensional generalization with separable dimensions, but the opposite effect is found with
integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved
faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These
results, which are analogous to more “non-linear” processing with integral than with separable dimen-
sions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the
assumptions of the unified rational theory of stimulus generalization and reveals interesting links

between compound and dimensional generalization phenomena.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important aspect of all forms of learning is generalization;
that is, once we have learned something about the environment,
to what extent do we generalize this knowledge to new situations,
similar but not identical to the original learning events?

All fields in psychology dealing with learning and inference
have explored one or more aspects of this problem. For example,
dimensional generalization, or how learning about a stimulus is
transferred to new stimuli that differ from the original along
continuous dimensions, has been studied in animal instrumental
conditioning (e.g., Blough, 1975; Guttman & Kalish, 1956; Soto &
Wasserman, 2010; for a review of unidimensional generalization,
see Ghirlanda & Enquist, 2003) and human identification and
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categorization (for reviews, see Nosofsky, 1992; Shepard, 1991).
On the other hand, compound generalization, or how learning about
one stimulus is transferred to new compounds comprising that
stimulus, has been studied in Pavlovian conditioning (e.g., Myers,
Vogel, Shin, & Wagner, 2001; Rescorla, 1997; Whitlow & Wagner,
1972) and human causal and contingency learning (e.g., Collins &
Shanks, 2006; Glautier, 2004; Soto, Vogel, Castillo, & Wagner,
2009).

Unfortunately, these two lines of research have been pursued
largely independently and researchers have shown little interest
in developing a unified theoretical framework to understand both
forms of generalization. Recently, Soto, Gershman, and Niv (2014)
provided such unified framework by extending the rational theory
of dimensional generalization (Shepard, 1987; Tenenbaum &
Griffiths, 2001) to the explanation of compound generalization
phenomena. In the following two sections, we briefly review this
theory, some of the relevant data that it attempts to explain and
the open issues addressed by the present work. We then describe
two experiments that aim to answer two of those open questions:
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Why are some dimensions integral and others separable? Are the
assumptions about integrality that are necessary to explain com-
pound generalization also important to explain dimensional
generalization?

1.1. Dimensional generalization and Shepard’s rational theory

The most common basic result of a dimensional generalization
experiment is that the response controlled by a stimulus orderly
decreases as the value of the stimulus in one or more continuous
dimensions is changed. An important insight in the study of
dimensional generalization was the idea that re-scaling of stimulus
dimensions to reveal “psychological dimensions” could lead to the
discovery of fundamental principles of generalization and to stim-
ulus representations that are useful for the study of other cognitive
processes (for a review, see Nosofsky, 1992).

Indeed, two fundamental results about dimensional generaliza-
tion have been found after such re-scaling. First, response probabil-
ity decays as an exponential function of the psychological distance
between a test stimulus and the original training stimulus
(Shepard, 1965, 1987). Second, when stimuli are varied in two
dimensions, the shape of the multidimensional generalization gra-
dient varies depending on the exact dimensions under study
(Cross, 1965; Shepard, 1987, 1991; Soto & Wasserman, 2010).
Here the distinction between separable and integral dimensions
becomes important (Garner, 1974; Shepard, 1991). Two dimen-
sions are separable if it is possible to perceive or attend to only
one dimension without attending to the other (e.g., size and orien-
tation of a line). These dimensions produce diamond-shaped gen-
eralization gradients (see Fig. 1a), in which there is more
generalization in the direction of the dimensions than in other
directions of space. Diamond-shape gradients are equivalent to
using a city-block metric to compute distances from coordinates
in a spatial representation of the generalization data, such as that
obtained from multidimensional scaling (MDS; Shepard, 1991).
Two dimensions are integral if it is not possible to perceive or
attend to only one dimension without attending to the other
(e.g., saturation and brightness). These dimensions produce circu-
lar generalization gradients (see Fig. 1b), in which there is more
or less the same generalization in any direction in the stimulus
space. Circular gradients are equivalent to using an Euclidean met-
ric to compute distances from coordinates in a spatial representa-
tion of the generalization data (Shepard, 1991).

Note that the fact that different sets of dimensions produce
multidimensional generalization gradients with different shapes
- or, equivalently, different metrics in a MDS representation - is
an empirical result. The usual mechanistic explanation for this
result is that different sets of dimensions interact differently dur-
ing perception. Separable dimensions, but not integral dimensions,
are processed independently and can be attended selectively
(Garner, 1974).

A full account of generalization requires answering not only
questions about mechanism, but also questions about function,
such as: Why is the shape of unidimensional generalization gradi-
ents exponential instead of some other shape? Why do some
dimensions seem to be processed separately and others integrally?
Rational theories of cognition (Anderson, 1990) provide answers to
such questions about function (Griffiths, Chater, Norris, & Pouget,
2012). Rational explanations propose hypotheses about what
aspects of the task of generalization could have led, through adap-
tation, to the observable features of generalization behavior.

Shepard (1987) proposed a rational theory in which the
properties of dimensional generalization are explained as resulting
from probabilistic inference. The theory proposes that when an
observer encounters a stimulus S1 followed by some significant
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Fig. 1. Contour plots of multidimensional generalization gradients predicted by the
consequential regions theory. The stimulus controlling a specific response is
represented by the coordinates (0,0) and the scale in each axis represents distance
from that stimulus along a specific perceptual dimension. Each line in a gradient
represents the set of all points in the bidimensional space that have the same
probability of generalization. These points of equal generalization probability
assume the shape of a diamond for separable dimensions (a), and the shape of
circles for integral dimensions using the direction hypothesis (b) and for integral
dimensions using the correlation hypothesis (c). To the left of each gradient several
examples of regions considered to evaluate the gradients are shown.

consequence, S1 is represented as a point in a psychological space.!
The stimulus is assumed to be a member of a natural class associated
with the consequence. This class occupies a region in the observer’s
psychological space, called a consequential region. The only informa-
tion that the observer has about this consequential region is that it
overlaps with S1 in psychological space. After observing a new stim-
ulus, S2, the inferential problem is to determine the probability that
S2 belongs to the same natural kind as S1—the same consequential
region—thus leading to the same consequence. This probability can
be obtained by ‘“hypothesis averaging,” by taking all possible

1 There are two important points to clarify about Shepard’s theory. First, when
Shepard’s first paper was published, Anderson’s “rational” level (Anderson, 1990) had
not yet been proposed. However, the most common interpretation of the theory is as
a rational analysis of generalization (e.g., Soto et al., 2014; Tenenbaum & Griffiths,
2001). Second, despite being a rational analysis, the theory still makes representa-
tional assumptions that should be clearly separated from its assumptions about the
generalization task (Fernbach & Sloman, 2011). The most important of these
assumptions is that the observer represents stimuli as points in a psychological
space. Importantly, explanations of generalization phenomena are a direct conse-
quence of how the theory formalizes the inferential task of generalization, with the
representational assumptions playing a minor role in such explanations.
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consequential regions that contain S1, each with a different size and
position, and computing the proportion of them that also contain S2.

When this process is repeated for many possible values of S2,
the resulting probability falls approximately exponentially with
distance between S1 and S2 in psychological space. More impor-
tantly for the present work, the shape and orientation of conse-
quential regions in space have an important impact in the shape
of multidimensional generalization gradients. Gradients shaped
like a diamond, typical of separable dimensions, are obtained when
the sides of each region are aligned with the stimulus dimensions
and their sizes vary independently. That is, separable dimensions
“correspond to uniquely defined independent variables in the
world” (Shepard, 1987, p. 1322). Fig. 1a shows the contours of a
generalization gradient obtained this way (for details, see the
Supplementary Material) and examples of the kind of consequen-
tial regions that produce the gradient, which look like rectangles
in which the size on one side is unrelated to the size on the other
side. The plus sign in the figure represents S1, and each contour is
the set of all points that have the same probability of coming from
the same consequential region as S1. Gradients that are more cir-
cular, as those found with integral dimensions, are obtained by
constraining regions to be squares, which have the same size in
each dimension, as in Fig. 1c. That is, integral dimensions are those
for which “there has been a positive correlation between the
ranges of variation of stimuli associated with important conse-
quences” (Shepard, 1991, p. 68). We will call this the correlation
hypothesis.

As shown in Fig. 1b, circular generalization gradients can also be
reproduced by assuming that rectangular regions have uncorre-
lated sizes along each dimension, but can have any orientation in
space (Austerweil & Griffiths, 2010). According to this direction
hypothesis, some dimensions are integral because natural classes
can extend in any direction of the space created by such dimen-
sions. The direction hypothesis deviates importantly from
Shepard’s theory in that it drops the assumption that natural
classes must have similar extent on all integral dimensions (see
Shepard, 1991, p. 67-68). As can be seen from Fig. 1, the shape
of multidimensional generalization gradients cannot be used to
distinguish between the correlation and direction hypotheses.

In summary, within Shepard’s theory there are two ways to
explain the distinction between integral and separable dimensions.
According to the direction hypothesis, natural classes might extend
only in the direction of the axes of stimulus space (separable
dimensions) vs. in any direction of stimulus space (integral dimen-
sions). According to the correlation hypothesis, natural classes
might have different and independent extensions along the two
axes of stimulus space (separable dimensions) vs. have the same
extension along the two axes of stimulus space (integral dimen-
sions). For Shepard, the most important distinction between sepa-
rable and integral dimensions is captured by the correlation
hypothesis (see Shepard, 1991, p. 68). Thus, two conceptually dif-
ferent versions of the rational theory of generalization exist, both
of them capable to explain multidimensional generalization
equally well, and there is no a priori reason to prefer one over
the other.

1.2. Compound generalization and a unified theory

In the fields of associative and causal learning, much research
has focused on examining to what extent learning about a stimulus
generalizes to new compounds containing that stimulus. For exam-
ple, in a typical summation experiment (e.g., Collins & Shanks,
2006; Rescorla, 1997; Soto et al., 2009; Whitlow & Wagner,
1972), participants might learn that both broccoli (stimulus A)
and tomato (stimulus B) independently produce an allergic reac-
tion of a certain intensity in an hypothetical patient, and then they

are asked to predict the intensity of the allergic reaction to the
compound “broccoli + tomato” (AB). A summation effect is found
when there is a higher response to the compound than to its
components.

Studies have found that compound generalization depends on
the type of stimuli used as components, among other factors (for
a review, see Melchers, Shanks, & Lachnit, 2008). For example,
studies on the summation effect in Pavlovian conditioning that
used stimuli of distinct sensory modalities, generally found evi-
dence of summation (Rescorla, 1997; Whitlow & Wagner, 1972).
On the contrary, absence of summation has been observed in stud-
ies using only visual stimuli (Aydin & Pearce, 1995; Rescorla &
Coldwell, 1995). Kehoe, Horne, Horne, and Macrae (1994) exam-
ined this issue directly and confirmed that summation is found
with stimuli of distinct sensory modalities (i.e., tone-light and
noise-light), but not with stimuli from the same modality
(tone-noise).

To explain this pattern of results, most contemporary models of
Pavlovian conditioning share the idea that the representation of a
stimulus should be “nonlinear” (Shanks, Lachnit, & Melchers,
2008) or “context sensitive” (Wagner, 2003); that is, a stimulus
presented in isolation is represented differently than when it is
presented in compound with other stimuli. The theories of
Wagner (2003), McLaren and Mackintosh (2002), and Harris
(2006) assume that stimuli are represented by a set of elements
whose activity, apart from depending on the stimulus they repre-
sent, depends on the presence or absence of other stimuli. Pearce
(1987, 1994), suggests instead that compound stimuli should be
represented as unique exemplars, and that the constituent ele-
ments only play a role in determining the degree of generalization
between configurations.

Although elemental and configural approaches, such as those of
Wagner (2003) and Pearce (1994), respectively, are often pre-
sented as radically distinct views of stimulus representation, it is
important to recognize that they both permit non-linear stimulus
processing,” although to varying degrees. The degree of non-linear
(i.e., not additive: the whole is different than the sum of elements)
processing assumed by a particular model has an influence on its
predictions regarding the summation effect. If a markedly nonlinear
processing (or highly context sensitive) is assumed, with very little
of the associative strength of A and B generalizing to the compound
AB, then it would be expected for the response to AB to be equal or
lower than that to A and B. Conversely, if more linear processing (the
whole approximates to the sum of elements) is assumed, then it
would be expected that much of the associative strength of A and
B is transferred to AB, obtaining greater responses to the compound
than to its elements (i.e., summation).

To explain results like those of Kehoe et al. (1994), some models
allow flexibility in the level to which they show nonlinear stimulus
processing. The main determinant for the level of nonlinear pro-
cessing in these models is stimulus similarity, or the level of over-
lap between the representation of two stimuli (Harris, 2006;
McLaren & Mackintosh, 2002; Pearce, 1987, 1994). A related, but
slightly different hypothesis is based on the distinction between
integral and separable dimensions. Integral dimensions are
thought to interfere with each other much more than separable
dimensions do. Thus, in a stimulus formed by two integral dimen-
sions, the identity of each dimension would tend to disappear, gen-
erating a new fusion, while with separable dimensions there would
be a conservation of the identity of each dimension. Following this
reasoning, several authors have suggested that components that

2 In fact, Ghirlanda (2015) has provided a formal proof that any configural model
can be translated into an equivalent elemental model and vice versa, so that they
make identical predictions, providing that some conditions are met. Such conditions
are met by current associative learning models.
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lead to more nonlinear representations are analogous to integral
dimensions, whereas components leading to more linear represen-
tations are analogous to separable dimensions (Lachnit, 1988;
Melchers et al., 2008; Myers et al., 2001; Wagner & Vogel, 2008).
However, this analogy has not been worked out quantitatively
within the mechanistic framework of associative learning theories.

Recently, Soto et al. (2014) proposed a rational theory that for-
malizes this hypothesis and provides a unified framework to
explain both dimensional and compound generalization. As in
Shepard’s theory, the model formalizes a generalization task in
which an observer experiences some stimulus followed by an
important consequence and assumes that there is a natural class
of similar stimuli that will also produce the consequence. This
set of stimuli form a consequential region in stimulus space whose
extension must be inferred from data. When more than one stim-
ulus is presented at the same time, as in compound generalization
experiments, they could belong to a single consequential region or
to multiple consequential regions. Thus, the learner must infer not
only the size but the number of consequential regions involved and
which regions produced which observed stimuli. Fig. 2 depicts an
example in which four stimuli, varying along two dimensions,
are assumed to belong to two different consequential regions.
Region Z; includes stimuli A and B and is associated with an out-
come, represented by the letter O. Region Z, includes stimuli C
and D and is associated with no outcome, represented by ~O.

Importantly, consequential regions with small sides, which rep-
resent more precise hypotheses, are weighted more heavily than
other hypotheses (i.e., the model assumes the size principle, see
Tenenbaum & Griffiths, 2001). This includes the case in which only
one of the sides is very thin while the other side is elongated, as
exemplified by region Z, from Fig. 2, which is elongated along
dimension 1, but short along dimension 2.

To understand better how the model works, take the example of
a summation experiment with stimuli that vary in two dimensions.
After observing the compound AB, one possibility is that each com-
ponent belongs to a different consequential region, as shown in
Fig. 3a. If each region is also independently associated with an out-
come O, then the model would predict that the outcome after AB is
the sum of the outcomes after A and B; that is, a summation effect.
A different possibility is that both A and B belong to the same
region, as shown in Fig. 3b. In this case, the model would predict
that the consequence after AB is the same as after either A or B;
that is, no summation effect.

Whether the model infers one or two consequential regions for
A and B depends on the kind of dimensions on which they vary. As
shown in Fig. 3b, when dimensions are integral and consequential
regions can be oriented in any direction, it is possible to find a sin-
gle elongated region that includes both stimuli. This hypothesis
would be weighted more heavily than other hypotheses that can
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Fig. 2. Schematic representation of the consequential regions model used by Soto,
Gershman and Niv (2014) to explain compound generalization phenomena.
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Fig. 3. Schematic representation of how different outcomes of a summation
experiment can be explained within the framework of consequential regions
theory.

explain the data. On the other hand, Fig. 3a shows that when
dimensions are separable and consequential regions can only elon-
gate along the axis of the stimulus space, there is no single elon-
gated region that can produce both A and B. In this case, one
hypothesis that would be weighted heavily is one in which each
stimulus has been produced by separated and small consequential
regions.

According to this model, it is more likely to find summation
with stimuli from different modalities because they are the
quintessential example of separable dimensions (Garner, 1974;
for a review of the evidence, see Marks, 2004). On the other hand,
stimuli from the same modality, such as a noise and a tone, are
more likely to vary along integral dimensions. As this example
illustrates, the success of the theory to explain a variety of com-
pound generalization phenomena strongly depends on the
assumption that the direction hypothesis is the correct way to dis-
tinguish between integral and separable dimensions. If the correla-
tion hypothesis were true, then consequential regions varying
along integral dimensions would have the shape of squares aligned
to the main dimensional axes, as shown in Fig. 1c. Elongated
regions such as that shown in Fig. 3b would not be possible and,
as was the case with separable dimensions, the hypothesis that A
and B are generated by different regions would have much higher
likelihood than the hypothesis that they are generated by a single
region.

1.3. The present study

It remains to be tested whether the assumption made by Soto
et al. (2014) to explain compound generalization (i.e., the direction
hypothesis) will also prove to be successful in explaining dimen-
sional generalization phenomena. As indicated earlier, both the
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direction hypothesis and the correlation hypothesis can reproduce
generalization gradients from separable and integral dimensions,
with the correlation hypothesis being favored by Shepard (1987,
1991). Thus, testing these two hypotheses in dimensional general-
ization experiments would deepen our understanding of both
dimensional and compound generalization. In dimensional gener-
alization, it would allow to determine what version of the conse-
quential regions theory can explain the data best, leading to a
better understanding of what distinguishes separable and integral
dimensions. In compound generalization, it would confirm or dis-
prove the validity of the assumptions used by the model of Soto
and colleagues, providing a test of whether this model is truly a
good candidate for a unified theory of stimulus generalization.

The goal of the present study is to test, in two experiments on
dimensional generalization of causal learning, the predictions
made by the direction and correlation hypotheses. The two exper-
iments exploit an interesting aspect of the analogy between com-
pound and dimensional generalization, first observed by Lachnit
(1988): it is possible to take a design from compound generaliza-
tion and translate it into a dimensional generalization experiment
by treating dimensional values as stimulus components.
Experiment 1 uses a design analogous to a summation experiment
(as in Lachnit, 1988), whereas Experiment 2 uses a design analo-
gous to a biconditional discrimination (Saavedra, 1975). More
importantly, only the direction hypothesis makes predictions for
such designs in which integral dimensions lead to results that
are analogous to nonlinear processing and separable dimensions
lead to results that are analogous to linear processing.

2. Experiment 1

In an attempt to connect the notions of integrality and separa-
bility with the type of stimulus processing in compound general-
ization, Lachnit (1988) adapted a summation design to
dimensional generalization by exchanging the discrete stimuli A
and B for values of a single stimulus in two dimensions. His exper-
iments used a human Pavlovian conditioning preparation with
stimuli varying in four values of each of two dimensions
(Dimension A with values a1, a2, a3, and a4; Dimension B with val-
ues b1, b2, b3 and b4), as shown in Fig. 4a. Training comprised tri-
als with two combinations that were always followed by an
outcome (alb2 —» O and a3b4 — 0) and two combinations that
never were followed by the outcome (a2bl - ~0O and
a4b3 — ~0). Upon the termination of training, summation was
evaluated by testing with a novel stimulus formed by dimensional
values previously followed by the outcome (a3b2) and a novel
stimulus formed by dimensional values previously not followed
by the outcome (a2b3).

It is easy to see from Fig. 4 that although the testing stimulus
a3b2 shares dimensional values with training stimuli associated
with the outcome (a1b2 and a3b4), it is closer in space to training
stimuli associated with no outcome (a2b1 and a4b3). The opposite
is true about testing stimulus a2b3. Lachnit (1988) reasoned that if
separable dimensions are processed linearly, then a summation
effect should occur and a3b2 should be strongly associated with
the outcome whereas a2b3 should be strongly associated with no
outcome. Consequential regions theory predicts the same: because
regions extend in the direction of separable dimensions, hypothe-
ses in which the stimulus a3b2 shares a consequential region with
alb2 or with a3b4, and hypotheses in which the stimulus a2b3
shares a consequential region with a2b1 or with a4b3, should be
weighted heavily (Fig. 4b).

Lachnit (1988) also proposed that if integral dimensions are
processed nonlinearly, then the opposite result should hold true:
a3b2 should be associated with no outcome because of

generalization from the closer stimuli a2b1 and a4b3, whereas
a2b3 should be associated with outcome because of generalization
from the closer stimuli alb2 and a3b4. This prediction, however, is
not in line with non-linear processing in current theories of
Pavlovian conditioning (e.g., Harris, 2006; McLaren & Mackintosh,
2002; Pearce, 1987, 1994; Wagner, 2003), which predict that the
association with an outcome acquired by the “components” a3
and b2 should generalize to a3b2.

Lachnit’s (1988) prediction with integral dimensions aligns bet-
ter with the direction hypothesis from consequential region the-
ory: if consequential regions can be oriented in any direction of
an integral space, then a strong hypothesis is that stimulus a3b2
shares a diagonally-oriented consequential region with the train-
ing stimuli a2b1 and a4b3, as shown in Fig. 4c.® Similarly, a2b3 is
likely to share a region with a1b2 and a3b4. As we described above
with the example of summation, the correlation hypothesis does not
allow for such elongated and diagonally-oriented consequential
regions, so it cannot make the same prediction as the direction
hypothesis.

Fig. 5a shows the predictions of the model of Soto et al. (2014)
for this design, when the direction hypothesis is implemented (see
Section A of the Supplementary Material for details of the simula-
tions). The most important prediction is of an interaction in which
an effect analogous to summation (a3b2 > a2b3) is expected with
separable dimensions, but the opposite effect (a3b2 <a2b3) is
expected with integral dimensions. As shown in Fig. 5b, the corre-
lation hypothesis does not predict an effect opposite to summation
(a3b2 < a2b3) with integral dimensions.*

Lachnit’s (1988) results were in line with his predictions and
the direction hypothesis, suggesting that the direction hypothesis
captures dimensional generalization in Pavlovian conditioning bet-
ter than the correlation hypothesis.

Although the results of Lachnit (1988) were straightforward, his
experiments included a confounding factor that is quite common
in studies that compare integral and separable dimensions.
Lachnit used completely different sets of dimensions for the sepa-
rable and integral conditions and the scaling within each dimen-
sion could have favored a specific pattern of generalization to the
critical test stimuli (see Section B of the Supplementary Material
for a fuller description of this issue). One solution to this problem
is pairing each dimension in the study with one dimension with
which it forms an integral pair and with one dimension with which
it forms a separable pair. In this balanced design, any artifacts
should affect both conditions equally and be averaged out in the
group results. Thus, to improve upon Lachnit’s study, Experiment
1 followed the design shown in Fig. 4, but balancing the assign-
ment of each dimension to the separable and integral conditions.

An additional novel contribution of the present experiment is
that it used a causal learning task, allowing us to determine
whether the results found by Lachnit in Pavlovian conditioning
can be found in experiments involving the more “cognitive” tasks

3 InFig. 4 and in our simulations, stimuli are equally spaced along each dimension.
With very large deviations from equal spacing, the hypothesis shown in Fig. 4c is not
strong. However, thin and elongated diagonal consequential regions can still account
for pairs of stimuli, including a testing stimulus and one of its closest training stimuli
(such as a3b2 and a2b1). Such consequential regions can be very thin and thus also
constitute strong hypotheses. Furthermore, such diagonally-oriented regions are
shorter than vertically- and horizontally-oriented regions like those shown in Fig. 4b,
thus being stronger hypotheses and leading to the prediction shown in Fig. 5a.

4 The simulations presented in Figs. 5 and 8 assumed squared consequential
regions. A different way to implement the correlation hypothesis is through circular
regions (Shepard, 1987). We performed additional simulations using circular regions
for integral dimensions; their results are presented in the supplementary material. In
short, while circular regions can qualitatively capture the most important results of
Experiment 1 for group integral, the predicted difference between a2b3 and a3b2 is so
small that it would have been difficult to detect in our experiment. Furthermore,
circular regions could not capture the results of Experiment 2.
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Fig. 4. Task used in Experiment 1 (a) and examples of regions heavily weighted by
the consequential regions model implementing the direction hypothesis, both for
separable dimensions (b) and for integral dimensions (c).

that are commonly used to study generalization in humans (e.g.,
Glautier, 2004; Soto et al., 2009).

2.1. Method

2.1.1. Participants

A total of 48 undergraduate psychology students at the
University of Talca participated in the experiment for course credit.
They had a mean age of 18.2 years (S=1.1). They were tested
individually and had no previous experience in similar research.

2.1.2. Materials

The stimuli were presented and data were collected using a HP
Compaq personal computer connected to a 14-in. color screen and
programmed using the E-prime software (Version 1.1; Psychology
Software Tools, Inc., Pittsburgh, PA). The stimuli were constructed

using a polygon and presented inside a white display screen in the
shape of an irregular square (see Fig. C3 in the Supplementary
Material). The stimuli were obtained by varying the same object
in eight dimensions: brightness (hue 5RP varying in brightness
value = 4:, 5:, 6:, and 7:, obtained from the Munsell color library
of the Macromedia Freehand MX software), saturation (hue 5RP
varying in chroma = :1,:4,:8, and:12, obtained from the Munsell
color library of the Macromedia Freehand MX software), vertical
position (5%, 25%, 50%, and 75% of the vertical axis of the display
screen), horizontal position (5%, 25%, 50%, and 75% of the horizon-
tal axis of the display screen), rectangle-height (15%, 20%, 25%, and
30% of the height of the display screen), rectangle-width (50%, 60%,
70%, and 80% of the width of the display screen), rotation around
the X-axis (0°, 45°, 135°, 180°) and rotation around the Y-axis
(0°, 45°, 135°, 180°). Note that the monitors were not calibrated,
so although brightness and saturation were manipulated directly
in the software used to create stimuli, we cannot guarantee that
the Munsell chip values reported here were actually displayed.
However, there is no reason to suspect that this technical limita-
tion would do anything beyond adding noise to our results.

In order to equate intradimensional generalization between
integral and separable conditions, each dimension was combined
with one integral and one separable dimension. The integral
dimensions were brightness and saturation (Integral 1; Lachnit,
1988) vertical and horizontal position (Integral 2; Garner &
Felfoldy, 1970), rectangle width and height (Integral 3; Dunn,
1983; Monahan & Lockhead, 1977) and rotation around the
X-axis and around the Y-axis (Integral 4; Soto & Wasserman,
2010). Stimuli in the separable sets were constructed with exactly
the same values as those of the integral sets. The separable dimen-
sions were Saturation and horizontal position (Separable 1), verti-
cal position and brightness (Separable 2), height and rotation
around the Y-axis (Separable 3), and rotation around the X-axis
and width (separable 4). When not used, the dimensions were
set at constant values. Since the participants had to solve two dis-
criminations, they were randomly assigned to one of the following
four subgroups (n = 6): integral 1 and 2, integral 3 and 4, separable
1 and 2, and separable 3 and 4. The specific stimuli involved in
these integral and separable combinations are reproduced in the
supplementary material (Figs. C1 and C2). Furthermore; in
Section D of the supplementary material we present experimental
evidence for the integrality and separability of this set of stimuli.

2.1.3. Procedure

At the beginning of the training phase, the participants were
given instructions indicating that they would play the role of a der-
matologist investigating what microorganisms would cause aging
or rejuvenating effects in the skin (see part C of the supplementary
material). Next, a series of 200 trials was presented to the partici-
pant (screenshots from training and testing trials are shown in
Fig. C3 of the supplementary material). At the beginning of each
trial, the sentence “the sample contains the following microorgan-
ism” appeared on the left-top portion of the screen simultaneously
with the stimulus (microorganism). The presentation of the stimu-
lus was followed 2 s later by the phrase, “What reaction you think
this microorganism will cause in the rat’s skin?” and the partici-
pants were required to answer “aging”, “neutral”, or “rejuvena-
tion”, by clicking the respective buttons. After the participant
entered a response, feedback was provided on the bottom of the
screen for 3 s. The feedback consisted of the words “CORRECT” or
“INCORRECT”, in yellow, over the word representing the pro-
grammed outcome, in white (i.e., “aging”, “neutral”, or “rejuvena-
tion”). The trial terminated with a new screen of 1s duration
reporting the cumulative percent of correct responses.

Each participant was asked to learn simultaneously two dis-
criminations of the type shown in Fig. 4a. One discrimination
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Fig. 5. Predictions of the direction (a) and correlation (b) hypotheses for stimuli tested in Experiment 1.

involved distinguishing between neutral and aging reactions and
the other between neutral and rejuvenation reactions. This gives
a total of 8 trial types that were presented in random order in 25
blocks of 8 trials each. A different set of stimuli was used in each
discrimination. The assignment of aging or rejuvenation outcomes
to each set of stimuli was counterbalanced across the participants
of each subgroup.

Upon completion of the 200 training trials, the participants
were presented with a series of testing trials. Each test stimulus
appeared separately in the top center of the screen and the partic-
ipants were asked to estimate the skin reaction to the presented
microorganism by choosing a number from -5 to 5 in an
11-points scale going from “maximal aging” to “maximal rejuvena-
tion,” with zero representing a neutral effect. The participants were
required to rate the four training stimuli and the four novel com-
pounds of each discrimination, totalizing 16 testing trials, pre-
sented in random order.

2.1.4. Data analysis

For each participant, the mean predictive ratings to each stim-
ulus were averaged across the two discriminations. Since the rat-
ings for the discrimination involving aging were expected to vary
between 0 and -5 and for the discrimination involving rejuvena-
tion to vary between 0 and 5, the former were multiplied by minus
one prior to analysis.

Stimuli were classified according to two criteria and the result-
ing classes were included as factors in the ANOVA. All stimuli were
classified according to their “outcome area” in “positive” (above
the main diagonal in Fig. 4a) and “neutral” (below the main diag-
onal in Fig. 4a). Novel test stimuli were also classified according to
stimulus type in “central” (a3b2 and a2b3) and “distal” (a1b4 and
a4b1).

Separate ANOVAs were carried out for trained and novel test
cues. Trained stimuli were analyzed through a 2 (outcome
area) x 2 (group: integral vs. separable) mixed effects ANOVA.
Novel test stimuli were analyzed through a 2 (outcome area) x 2
(stimulus type) x 2 (group: integral vs. separable) mixed effects
ANOVA. Two additional 2 (outcome area) x 2 (group) ANOVAs
were carried out, one for each level of stimulus type. Of these,
the analysis of central stimuli is theoretically the most important.
Only the direction hypothesis consistently predicted an outcome
area x group interaction for this analysis, with higher responding
to a2b3 than a3b2 in group integral. Higher responding to a3b2
than a2b3 in group separable is predicted by the model regardless
of what hypothesis is adopted to explain integrality. Thus, we
planned to run pairwise comparisons between a3b2 and a2b3
within each group, using the Bonferroni correction for multiple
comparisons. Regarding the analysis of distal cues, both hypothe-
ses predict a main effect of outcome area, with higher responding
to alb4 than a4b1 in both groups.

An alpha level of 0.05 was adopted for all tests of significance.
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2.2. Results and discussion

Fig. 6 presents the mean predictive ratings for testing stimuli.
Both groups learned the discrimination, as indicated by high mean
causal judgements for stimuli that were followed by the outcome
(a1b2/a3b4) and low mean causal judgements for stimuli that
were not followed by the outcome (a2b1/a4b3). These observa-
tions were supported by the ANOVA on data from trained cues,
which showed a significant main effect of outcome area,
F(1,46) = 1066.08, p <.001, nf, = .96, whereas the main effect of
group and the interaction were not significant.

The pattern of causal judgements for test stimuli was quite sim-
ilar to the predictions of the direction hypothesis shown in Fig. 5a.
The pattern of responding was different for central stimuli and dis-
tal cues. With distal cues, both groups gave higher ratings to the
positive stimulus (alb4) than to the neutral stimulus (a4b1),
whereas with central cues, only the integral group gave higher rat-
ings to the positive stimulus (a2b3) than to the neutral stimulus
(a3b2), with the separable group showing the opposite pattern.
The ANOVA on data from test stimuli confirmed these observa-
tions, showing a significant group x outcome area x stimulus type
interaction, F(1,46)=17.45, p<.001, #2 = .28. This ANOVA also
showed significant main effects of group, F(1,46)=6.51, p <.05,
15 = .87, and outcome area, F(1,46)=17.45, p<.001, 15 = .28,
and significant interactions of group x outcome area,
F(1,46)=9.33, p<.001, 1712, =.17, and outcome area x stimulus
type, F(1,46) = 57.6, p < .001, 175 = .56.

The group x outcome area ANOVA for central stimuli confirmed
that the interaction predicted by the direction hypothesis and
observed in Fig. 6 was significant, F(1,46)=24.01, p<.001,
12 = .96, whereas neither of the main effects were significant.
The planned pairwise comparisons indicated that the rating to
a3b2 was significantly higher than to a2b3 in group separable
(Bonferroni-corrected p <.001) and the rating to a3b2 was signifi-
cantly lower than to a2b3 in group integral (Bonferroni-corrected
p<.01).

The group x outcome area ANOVA for distal stimuli revealed a
completely different pattern of results, with significant main
effects of group, F(1,46) = 6.94, p <.05, nf, = .13, indicating higher
ratings in group separable than in group integral, and outcome
area, F(1,46)=113.62, p <.001, 7]5 = .71, indicating higher ratings
to the stimuli formed by dimensions that were followed by the
outcome in training, but a non-significant interaction between
these factors. This pattern of results is captured by both the direc-
tion and correlation hypotheses (see Fig. 5).
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On the other hand, there is one aspect of the results shown in
Fig. 6 that is not captured by the consequential regions model,
regardless of the hypothesis used to explain integrality: in group
integral, causal judgements to stimulus alb4 were higher than
those to stimulus a2b3. As Fig. 5a shows, the direction hypothesis
predicts the opposite effect (i.e., alb4 < a2b3) and the correlation
hypothesis predicts no difference. A post hoc paired-samples t-test
indicated that the difference between ratings to alb4 and a2b3 in
group integral was not significant, t(23)=—1.715, p=0.10, even
without correction for multiple comparisons, which is more in line
with the null effect predicted by the correlation hypothesis.

Note that other observed differences in mean rating between
distal and central test stimuli (alb4 >a2b3 in group separable;
a4b1 <a3b2 in both groups) are correctly predicted by both
hypotheses. One possibility is that all differences between distal
and central test stimuli arose as the result of categorization, a phe-
nomenon that is not covered by the rational model of generaliza-
tion. For example, if people were using a diagonal bound to solve
the task shown in Fig. 4a, then simple distance-to-bound effects
could account for all observed differences between distal and cen-
tral test stimuli. We will discuss this possibility in more detail in
the General Discussion. For now, note that learning of a category
bound could not explain the most interesting result of an interac-
tion between condition and stimulus for the central test stimuli.
Learning of a diagonal category bound leads to the prediction of
higher responding to a3b2 than a2b3 in both integral and separa-
ble conditions.

To summarize, we found an interaction between group and out-
come area for the central test stimuli that is in agreement with the
results found by Lachnit (1988). That is, presenting a combination
of dimensional levels previously associated with an outcome pro-
duces an effect analogous to summation when separable dimen-
sions are used, but the opposite effect (more responding to a
control combination than to the summation combination) is found
with integral dimensions. This result is predicted by the direction
hypothesis implemented by Soto et al. (2014).

The results show that the effect found by Lachnit was not an
artifact of the specific stimuli used in each of the conditions of
his experiment, as we made an attempt to avoid differences in gen-
eralization between the dimensions by using each dimension in
both integral and separable conditions. Furthermore, the effect
found by Lachnit is not restricted to simple forms of associative
learning, but can be found in a task involving causal inference.

The direction hypothesis incorrectly predicted much lower
responding to alb4 in group integral than what was observed in
the data. For this reason, it seems necessary to gather further
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Fig. 6. Mean predictive ratings assigned to each experimental stimulus during testing in Experiment 1. Error bars are standard errors of the mean.
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evidence as to whether the direction hypothesis can better capture
data from dimensional generalization experiments than the corre-
lation hypothesis. Experiment 2 was carried out with this goal in
mind.

3. Experiment 2

Experiment 2 also exploits the analogy proposed by Lachnit
(1988) between stimulus components in compound generalization
and dimensional values in dimensional generalization. In a bicon-
ditional discrimination (Harris & Livesey, 2008; Harris, Livesey,
Gharaei, & Westbrook, 2008; Saavedra, 1975) participants are pre-
sented with two compounds, AB and CD, followed by an outcome,
and two compounds, AC and BD, followed by no outcome. Because
each individual stimulus is followed by outcome and no outcome
the same number of times, learning such a discrimination requires
nonlinear stimulus representations.

When we replace stimulus components A, B, C and D for dimen-
sional values a1, a2, b1 and b2, the biconditional discrimination
takes the form shown in Fig. 7a. Fig. 7b shows that, according to
the direction hypothesis, there is a very simple configuration of
consequential regions that solves this discrimination when stimuli
vary in integral dimensions. Here, one diagonal consequential
region associated with the outcome generates alb1l and a2b2,
whereas a different diagonal consequential region associated with
no outcome generates alb2 and a2b1. There is no equivalent sim-
ple configuration with separable dimensions. In this case, the
model has no alternative but to consider hypotheses in which
specific stimuli are associated with single consequential regions,
as in the example shown in Fig. 7c. The same is true for the case
of integral dimensions and the correlation hypothesis: because
consequential regions are aligned to the axes, the configuration
in Fig. 7b is impossible.

For this reason, we expect that if the direction hypothesis is
true, learning of the biconditional discrimination should be faster
with integral dimensions. Fig. 8 shows the predictions of the model
for this experimental design, both when the direction (panel a) and
the correlation hypotheses (panel b) are implemented (for details
about these simulations, see the supplementary material). It can
be seen that the direction hypothesis predicts consistently better
performance with integral dimensions across all training sessions.
On the other hand, the correlation hypothesis does not predict a
consistent difference between integral and separable dimensions
in the learning speed of the biconditional discrimination.

Nonlinear discriminations such as that shown in Fig. 7 have been
widely studied in Pavlovian conditioning (e.g., Harris et al., 2008;
Saavedra, 1975), human causal learning (e.g., Harris & Livesey,
2008; Shanks, Charles, Darby, & Azmi, 1998) and category learning
(e.g., Blair & Homa, 2001; Medin & Schwanenflugel, 1981).
However, we know of no previous study directly comparing learning
of a nonlinear discrimination with integral and separable stimuli.

Experiment 2 complements Experiment 1 in a very important
way. Experiment 1 tested an effect analogous to summation in
dimensional generalization. The summation effect is typically

considered evidence of linear processing in compound generaliza-
tion, and this kind of result was found only with separable dimen-
sions. Thus, the previous experiment gave evidence for a relation
between linear processing and separability, as proposed by several
researchers (Lachnit, 1988; Melchers et al., 2008; Myers et al.,
2001) and formalized by the consequential regions model (Soto
et al,, 2014). With integral dimensions, the results suggested an
effect that was opposite to summation, for which it is impossible
to find an analogy in the compound generalization literature.
Thus, the previous experiment failed to link non-linear processing
and integrality. On the other hand, the biconditional discrimina-
tion tested in the present experiment is usually considered evi-
dence of non-linear processing in compound generalization. If
the analogous discrimination tested here was solved faster with
stimuli varying in integral dimensions, then there would be evi-
dence linking separability with linear processing and integrality
with non-linear processing.

3.1. Method

3.1.1. Participants

A total of 32 undergraduate psychology students at the
University of Talca, Chile (n=16) and at the University of
Rosario, Colombia (n=16) participated in the experiment for
course credit. They had a mean age of 18.5 years (S =1.2). They
were tested individually and had no previous experience in similar
research.

3.1.2. Materials and procedure

The same causal learning procedure and strategy for stimulus
construction as in Experiment 1 were used. Training involved
two simultaneous biconditional discriminations. In one of the dis-
criminations there were two stimuli that always were followed by
an aging reaction (alb1 and a2b2) and two stimuli that were fol-
lowed by a neutral reaction (a1b2 and a2b1). The other discrimina-
tion was identical to the first, but involved neutral versus
rejuvenation outcomes and a different set of stimuli. The partici-
pants received 120 trials, including 15 presentations of each of
the 8 trial types, with the restriction that each trial type was pre-
sented once in each block of eight trials in a random order within
the block.

The participants were randomly assigned to one of the four
sub-groups, defined in the same way as in Experiment 1. In each
subgroup, the assignment of specific stimuli to the outcome and
no outcome consequences and the assignment of one or another
set of stimuli to the aging and rejuvenation outcomes were
counterbalanced.

3.1.3. Data analysis

The effects of interest were assessed by computing the mean
percent of correct responses in each block of training involving
the 8 trial types. The statistical reliability of the effects was exam-
ined by a 15 (training block) x 2 (group: integral vs. separable)
mixed design ANOVA.
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Fig. 7. Task used in Experiment 2 (a) and examples of regions heavily weighted by the consequential regions model implementing the direction hypothesis, both for integral

dimensions (b) and for separable dimensions (c).
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Fig. 8. Predictions of the direction (a) and correlation (b) hypotheses of accuracy across training in the biconditional discrimination of Experiment 2.

3.2. Results and discussion

biconditional discrimination, those belonging to group integral
learned it faster than those in group separable. This was con-

Fig. 9 presents the percent of correct responses over training
for the integral and separable groups. It is apparent from the
figure that although in both groups the participants learned the

firmed by reliable main effects of block (F (14,420)=16.840;
p<0.001; 17‘2,:0.36) and group (F (1,30)=10.542; p=0.003;
12 = 0.260).
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Fig. 9. Mean percent of correct responses over the 15 blocks of training of Experiment 2. Error bars are standard errors of the mean.
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In summary, the direction of the differences among the groups
was in agreement with the predictions of the direction hypothesis,
which seems to provide a better way to distinguish between inte-
grality and separability than the correlation hypothesis.
Furthermore, the present results complement those of
Experiment 1 in that they establish a link between non-linear stim-
ulus processing in compound generalization and integrality in
multidimensional generalization.

4. General discussion

Experiments 1 and 2 were designed as a test for the notion of
integrality proposed by the direction hypothesis, implemented in
a recent unified rational theory of stimulus generalization that
explains both compound and dimensional generalization (Soto
et al., 2014). The predictions of the direction hypothesis were con-
trasted to those of the correlation hypothesis, an alternative way to
distinguish between separable and integral dimensions within
consequential regions theory (Shepard, 1987, 1991).

Experiment 1 showed that an effect analogous to summation is
found in dimensional generalization with separable dimensions,
but the opposite effect is found with integral dimensions. These
results are the first demonstration of this effect in causal learning
and confirm the findings of Lachnit (1988) in Pavlovian condition-
ing. Furthermore, Experiment 1 ruled out the possibility that
Lachnit’s findings were due to using different dimensions for the
integral and separable stimuli.

Experiment 2 showed that an analogue to a biconditional dis-
crimination is solved faster by people when stimuli vary in integral
dimensions than when stimuli vary in separable dimensions.

The results from both experiments were in line with the predic-
tions of the direction hypothesis, but inconsistent with the predic-
tions of the correlation hypothesis. Because assuming the
correctness of the direction hypothesis was crucial in the model
of Soto et al. (2014) to explain compound generalization within
the framework of consequential regions theory, the experiments
also support this model as a unified theory of stimulus
generalization.

These results have implications both for fields studying dimen-
sional generalization, such as instrumental conditioning and stim-
ulus identification, and for fields studying compound
generalization, such as Pavlovian conditioning and human causal
learning. Regarding dimensional generalization, the present results
show that the best way to conceptualize the distinction between
integral and separable dimensions in consequential regions theory
is the following: separable dimensions are special directions in
stimulus space along which natural kinds extend, whereas integral
dimensions are those for which natural kinds extend in any direc-
tion of stimulus space.

Regarding compound generalization, previous work has shown
that assuming the direction hypothesis is crucial to explain com-
pound generalization phenomena using consequential regions the-
ory (Soto et al., 2014). The results reported here lend support to
this assumption, showing that it is also crucial to explain dimen-
sional generalization phenomena.

The results reported here also show that in some occasions an
interesting link arises between dimensional and compound gener-
alization: when a design from compound generalization is trans-
lated into a design for dimensional generalization by replacing
discrete stimulus components with dimensional values, experi-
mental results that are analogous to linear processing are found
with separable dimensions and experimental results that are anal-
ogous to nonlinear processing are found with integral dimensions.
To the best of our knowledge, the only theory currently capable of
capturing such relations between component and dimensional
interactions is the theory of Soto et al. (2014).

4.1. Levels of integrality in the rational theory of generalization

The main goal of a rational analysis of integrality is to under-
stand why integral dimensions produce observed patterns of gen-
eralization. From a mechanistic perspective, a related question that
can inform such rational analysis is this: How are integral dimen-
sions represented and processed?

Smith and Kemler (1978) distinguished two possibilities
regarding the representation of integral dimensions. Integral
dimensions could be non-primary axes, having no special status
compared to any other direction in psychological space, or they
could be primary axes, being perceived hollistically but also sus-
taining a less preferred mode of processing in terms of component
parts. A number of recent studies suggest that integral dimensions
are primary axes, being psychologically meaningful despite the fact
that they are usually processed in a holistic fashion (Foard &
Kemler-Nelson, 1984; Grau & Kemler-Nelson, 1988; Jones &
Goldstone, 2013; Melara & Marks, 1990; Melara, Marks, & Potts,
1993).

Kemler-Nelson (1993) concluded from a literature review that
integral dimensions are real psychological dimensions (a similar
conclusion was reached more recently by Jones & Goldstone,
2013) that are usually processed holistically, but in a small propor-
tion of occasions are processed analytically. In this perspective,
integrality and separability are two ends of a continuum, a conclu-
sion on which most researchers would agree (e.g., Garner, 1974;
Shepard, 1991; Smith & Kemler, 1978). On the other hand, the
two mechanisms of holistic and analytic processing are a pure
dichotomy. What determines where in the integrality-separability
continuum lies a particular pair of dimensions is the extent to
which their default mode of processing (holistic or analytic) is
combined with instances of the opposite mode of processing.

The finding that integral dimensions can sometimes be primary
axes seems problematic for the directionality hypothesis because,
if natural kinds extend in any direction of psychological space, then
there seems to be no reason to represent special dimensions at all.
On the contrary, representing the dimensions might hinder learn-
ing about natural classes, because this would require an additional
step of integration of information from separate representations.
On the other hand, the correlation hypothesis seems to relate bet-
ter to the idea of privileged primary axes. If natural kinds extend in
specific directions of psychological space, but their extension is
correlated, then there is reason to represent such directions as spe-
cial dimensions and, at the same time, produce generalization gra-
dients that are similar in any direction of space.

How can we reconcile the finding of primary integral dimen-
sions with the directionality hypothesis, which was supported by
our experimental results? In our model, the distinction between
integral and separable dimensions is implemented as two different
hypotheses spaces on the possible values taken by a parameter, 0,
describing the orientation of consequential regions with respect to
the dimensions of stimulus space. With separable dimensions, only
hypotheses in which consequential regions are aligned with the
axes of the space are considered (0 = 0°). With integral dimensions,
hypotheses in which consequential regions can extend in any
direction of the space are considered (any 0 from 0° to 360°).
These two hypothesis spaces are two extremes in a continuum, just
as the concepts of pure integrality and separability. As explained in
the supplementary material, assigning a prior probability v<1 to
hypotheses in which 0 = 0°, and a uniform probability to all other
hypotheses about 6 allows the model to produce generalization
patterns intermediate between integrality and separability, as
shown in Fig. 10. Visual inspection of the gradients in Fig. 10 sug-
gests that gradients predicted by the correlation hypothesis for
integral dimensions are similar to those predicted by the direction
hypothesis as intermediate cases between pure integrality and
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Fig. 10. Contour plots of generalization gradients predicted by the direction hypothesis for several cases intermediate between pure integrality (left) and pure separability

(right).

pure separability (compare v=0.2 and v=0.5 in Fig. 10 with
Fig. 1c). Such intermediate cases could involve natural classes that
can extend in any direction of space with similar probability, but
which are slightly more likely to extend in the direction of the
main axes. These cases would provide a rational explanation to
the findings of psychologically-privileged integral dimensions that
is clearly related to Kemler-Nelson’s (1993) mechanistic explana-
tion in terms of combined modes of processing. That is, the propor-
tion of holistic and analytic processing of two dimensions might be
a function of the probability that natural classes extend in any
direction of space versus in the direction of psychological
dimensions.

4.2. Learning integral and separable dimensions

The version of our rational model discussed in the previous sec-
tion can be easily extended to make predictions about what kinds
of experiences with natural kinds should lead to learning of sepa-
rable or integral dimensions. Although the gradients displayed in
Fig. 10 were obtained by setting the parameter v to specific values,
it is also possible to define a prior distribution on this parameter
and learn, through Bayesian inference, what is the appropriate
metric for a given pair of dimensions given past experience with
categories varying in those dimensions.

In fact, this strategy was followed by Austerweil and Griffiths
(2010) to predict what kinds of experiences should induce general-
ization patterns typical of integral and separable dimensions. As in
the model of Soto et al. (2014), Austerweil and Griffiths assumed
the direction hypothesis to distinguish between integral and sepa-
rable dimensions. In an experiment testing their predictions, the
authors found that after learning several categories aligned with
the dimensions of width and height of a rectangle, generalization
gradients along those dimensions became similar to those
expected from separable dimensions. On the other hand, after
learning categories with an extension indifferent to the original
dimensions, generalization gradients became similar to those
expected from integral dimensions.

This framework could also help to explain what conditions lead
to a change in metric for a given pair of dimensions. A change from
integrality to separability, or vice-versa, might be more or less dif-
ficult depending on a number of conditions. For example, the dif-
ferentiation of novel dimensions that appear to be integral can
happen after limited experience in a single categorization task
(e.g., Goldstone & Steyvers, 2001; Soto & Ashby, 2015), and any
direction in space can serve as a basis for such learned dimensions
(Folstein, Gauthier, & Palmeri, 2012). On the other hand, similar
experience with traditional integral dimensions can fail to produce
evidence of differentiation (Goldstone, 1994), particularly when
the relevant direction in space is misaligned with the integral axes
(Foard & Kemler-Nelson, 1984). A possible explanation from our
rational theory is that integral dimensions should be more difficult
to differentiate when there is more previously accumulated evi-
dence for their integrality. This previously accumulated evidence
can be modeled as a distribution over the parameter v that is

biased toward the integral metric. The stronger this bias is, the
more new evidence is required to infer a separable metric.

Both of our experiments involved training with
diagonally-oriented categories of stimuli (see Figs. 4c and 7b).
Given the evidence that arbitrary directions in an integral space
can be the basis for newly-learned dimensions (Folstein et al.,
2012; Soto & Ashby, 2015), it could be argued that training in
our tasks led to learning of diagonally-oriented separable dimen-
sions in the integral conditions. If that was the case, then our
results could be explained as arising from differently-oriented sep-
arable dimensions instead than from the integrality/separability of
dimensions. There are two reasons that make this explanation of
our results unlikely. First, learning of diagonal dimensions would
be quite difficult with our stimuli. Traditional integral dimensions
like those used here are privileged directions in stimulus space
(Kemler-Nelson, 1993) and, unlike completely novel dimensions,
do not seem to be differentiated after categorization training
(e.g., Goldstone, 1994). Second, dimension differentiation seems
to require much more extensive categorization training than that
used here, both in terms of number of stimuli per category and
duration of training (see Folstein et al., 2012; Goldstone &
Steyvers, 2001; Soto & Ashby, 2015), even when completely novel
dimensions are trained.

4.3. What is the best mechanistic explanation for our results?

The consequential regions theory explored here provides a
rational analysis of generalization (Anderson, 1990). This type of
explanation is fundamentally different from mechanistic theories
of compound generalization, such as computational models of
associative learning (e.g., Harris, 2006; McLaren & Mackintosh,
2002; Pearce, 1987, 1994; Wagner, 2003) and mechanistic theories
of category learning (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Kruschke, 1992; Nosofsky, 1984). An open ques-
tion is which of these models provides the best mechanistic expla-
nation of our results.

The results of Experiment 2 could be explained straightfor-
wardly by contemporary models of associative learning (e.g.,
Harris, 2006; McLaren & Mackintosh, 2002; Wagner, 2003). In
these models, representing dimensional levels just as discrete
stimulus components and assuming that integral components
determine a higher level of nonlinear processing than separable
components leads to the correct prediction: better learning of the
biconditional discrimination with integral than separable
dimensions.

Such straightforward application of associative models presents
more difficulties in explaining the results from Experiment 1. One
might assume that the experiment involves discrimination
between 4 compounds formed by unique and common elements,
a1b2X+, a3b4X+, a2b1X—, and a4b3X—, where X represents a con-
stant contextual cue. Assuming an error-driven learning rule (e.g.,
Rescorla & Wagner, 1972), the uniquely reinforced elements a1, b2,
a3 and b4 should become substantially excitatory, the partially
reinforced X element becomes moderately excitatory, and the
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uniquely nonreinforced elements, a2, b1, a4 and b3, become inhi-
bitory. In testing, differential responding to the novel compounds
a3b2X and a2b3X would depend on how much excitation receives
the former from a3 and b2, and how much inhibition from a2 and
b3 receives the latter. If the integral compounds are processed in a
more nonlinear fashion than the separable compounds, it is
expected a greater loss of excitation (i.e.,, less responding to
a3b2) and greater loss of inhibition (more responding to a2b3) in
the integral that in the separable condition. This might lead to
the correct predictions that group separable should show greater
responding to a3b2 than group integral and that group integral
should show greater responding to a2b3 than group separable.
However, this reasoning cannot account for the fact that in the
group integral a combination of two dimensional levels never fol-
lowed by an outcome (a2b3) led to higher causal ratings than a
combination of two dimensional levels that were always followed
by an outcome (a3b2).

Other mechanistic models of associative learning can describe
compound and dimensional generalization through a unified the-
ory (e.g., Blough, 1975; Ghirlanda, 2005). However, such models
were developed to explain only unidimensional generalization
phenomena, and they cannot capture basic results from multidi-
mensional generalization, such as the different shapes of general-
ization gradients along separable and integral dimensions (e.g.,
Soto & Wasserman, 2010). Thus, it seems like mechanistic models
of associative learning will require important modifications before
they can account for results such as those presented here.

The rational theory of Soto et al. (2014) suggests that the infer-
ential task imposed by compound generalization is simply an
extension of the task of dimensional generalization, in which more
than a single stimulus can be presented at the same time. Thus, the
inferential task of compound generalization contains all elements
of the task of dimensional generalization, plus the additional prob-
lem of inferring whether different stimulus components have been
generated by the same latent cause. What this suggests is that a
successful model of compound generalization should start by
implementing mechanisms to explain dimensional generalization.
The development of such a model is possibly one of the most
important theoretical challenges ahead of us in the field of stimu-
lus generalization.

Now consider how models of category learning might account
for the present results. Exemplar models of categorization have
been used in the past to explain differences between integral and
separable dimensions in learning of categorization tasks
(Nosofsky et al., 1994; Nosofsky & Palmeri, 1996), based on the
assumption that selective dimensional attention is more easily
deployed to separable than integral dimensions. The same assump-
tion could be used to explain the results of Experiment 1. Selective
attention to one dimension essentially collapses the psychological
space onto that dimension, making stimuli that share a value in the
dimension very similar to one another. Generalization between
such similar stimuli could lead to the pattern found for separable
dimensions. Without selective attention, generalization from the
closest training stimuli to the test stimuli (e.g., from alb2 and
a3b4 to the test stimulus a2b3) should favor a pattern of results
similar to that found for integral dimensions.

Differences in selective attention are less likely to explain the
results of Experiment 2. In this case, there is faster learning of
the task with integral dimensions, meaning that the lack of selec-
tive attention would have led to better performance. It is unclear
why selective attention to separable dimensions would be
deployed in a way that hinders performance in a task.

Exemplar theory could explain the results observed in
Experiment 2 as arising from the metric of the spatial space used
to represent integral and separable dimensions. If it is assumed
that integral dimensions are associated with an Euclidean metric

and separable dimensions with a city-block metric, then there
should be more intra-class generalization with integral than with
separable dimensions in Experiment 2, facilitating learning with
integral dimensions relative to separable dimensions. However,
this is not an assumption that exemplar theorists have consistently
made (see Maddox & Ashby, 1998), and thus the theory can explain
the present results only in a post-hoc fashion. Furthermore, it is
unclear whether this would constitute a proper mechanistic expla-
nation. As mentioned in the introduction, different metrics of spa-
tial models work as a re-description of the shape of generalization
gradients. Taking this into account, an explanation of generaliza-
tion data that resorts only to the metric in a spatial model is
circular.

Regarding the predictions of prototype (e.g., Smith & Minda,
1998) and decision-bound (e.g., Ashby & Maddox, 1993) theories
of categorization, both of them would make the correct prediction
for the integral condition of Experiment 1, as they would divide the
space into “outcome” and “no outcome” regions through a diago-
nal bound and predict higher judgments of causality to a2b3 than
to a3b2. However, these theories would fail to make the opposite
prediction for separable dimensions, where a similar diagonal
bound should be learned.

Prototype theory cannot explain learning of non-linearly sepa-
rable categorization tasks such as that used in Experiment 2
(Medin & Schwanenflugel, 1981). Although decision bound theory
could explain learning of such structures through non-linear
bounds, it is unclear how this theory could explain the observed
difference in learning speed between the integral and separable
conditions.

Overall, it seems clear that exemplar theories of category learn-
ing are in a better position than competing models to explain the
results presented here. On the other hand, it is unclear whether
these models can be used to explain the results of studies in com-
pound generalization that contemporary models of associative
learning can explain. One of the appeals of the rational model
developed by Soto et al. (2014) is that it allows to explain both
dimensional and compound generalization phenomena within
the same framework. We hope that work with the rational theory
of generalization can provide insights on how to extend mechanis-
tic models in this direction.

5. Conclusion

In sum, a consequential regions model in which the main dis-
tinction between integrality and separability is the direction of
consequential regions can: (1) explain data from dimensional gen-
eralization experiments better than Shepard’s correlation hypoth-
esis, as shown by the present experiments, (2) explain data from
compound generalization experiments, as shown by Soto et al.
(2014), (3) produce generalization gradients intermediate between
pure integrality and separability and explain why a pair of dimen-
sions lies at a particular point in the integrality-separability con-
tinuum, (4) provide insights about the conditions under which
separable or integral dimensions can be learned from experience,
and (5) provide insights about how to extend current mechanistic
models of learning so that they can explain both dimensional and
compound generalization phenomena.
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A. The consequential regions model of Soto et al. (2014)

Here we briefly describe the consequential regions model of Soto et al. (2014),
the way in which it was extended to implement the direction and correlation hypotheses
and the procedures followed to obtain the simulated results presented in Figures 1, 5 and

& of the main article.

The model

This model proposes that the task of the animal during an associative learning
situation, and the task of humans in a causal learning or contingency learning experiment,
is to infer the latent causes that have produced observable stimuli and an outcome. On
each trial ¢ the learner observes (1) one or more stimuli indexed by i and described by a
vector X, = {Xy, ..., Xsy} of J continuous variables or stimulus dimensions, and (2) an
outcome magnitude represented by the scalar 7,. For example, assume that on the first
trial of one of our experiments a participant observes stimulus #1, with values 2 in
dimension 1 and 4 in dimension 2. This stimulus is represented in the model as x;; = {2,
4}, as shown in the left part of Figure A1l. The participant also observes the outcome

"rejuvenation," which is represented by 7, = 5, as shown in the right part of Figure S1.
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Figure Al. Example of the data observed by a participant on a given trial according to our
rational model.

The generative process that produces these data is as follows. On each trial, a
number of latent causes are sampled to be active or inactive. These binary variables are
collected in the matrix Z, in which each column represents a latent variable and each row
represents a trial. Z is distributed according to the Indian Buffet Process with parameter o
(see Griffiths & Ghahramani, 2011):

Z ~IBP(a). (1)

The top of Figure A2 shows three of these binary variables (Z, Z, and Z3). Only
the shaded variable Z; has been sampled to be active during the first trial. Given that this
latent variable is active, it generates a number of stimuli n4, a variable that follows a
geometric distribution with parameter 7

n, ~ Geometric(ﬁ) . (2)

This distribution favors a small number of stimuli generated by each latent cause
on a given trial. Accordingly, the latent cause Z; is shown in Figure A2 generating a
single stimulus, x;;. Any stimulus generated by the latent cause Z; has a value in each of

the dimensions of psychological space. In the present example, there are two values: one



for each dimension shown in Figure A2. The specific values that a stimulus can obtain,
which are equivalent to the position of the stimulus in space, are constrained by the
consequential region associated with a latent cause. In Figure A2, the consequential
region associated with Z; is represented by the shaded rectangle. Note that the

consequential regions associated with different latent variables can overlap in space.
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Figure A2. Schematic representation of the process generating stimuli with values in a number of
dimensions in the model of Soto et al. (2014).

Two vectors of parameters are associated with each of these rectangular
consequential regions. The parameter my; represents the position of consequential region
k in dimension j. In the example shown in Figure A2, there are two of these parameters
(one for each dimension) that can be arranged in the vector {2,2}, which determines the
position of the rectangle in space. The parameter s;; represent the size of consequential

region k in dimension j. In the example shown in Figure A2, there are two of these



parameters (one per dimension), representing the width (equal to 3 units) and height
(equal to 1 unit) of the rectangular consequential region.

Stimuli are generated by just sampling from all possible values inside an active
consequential region. Thus, the likelihood of sampling stimulus x. from the consequential

region ckis given by a uniform distribution:

S, . S,
Xy ~ Uniform(mkj - %,mkj + %) . 3)

The model also assumes the existence of a consequence distribution over the
possible positions and sizes of regions, which is shared by all latent causes. The position

parameter is normally distributed:
my; ~ Normal(um,aj,) 4)

The size parameter is uniformly distributed:

s,; ~ Uniform(a,b) (5)

(w)=4=R,

-t
T
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Outcome Magnitude

Figure A3. Schematic representation of the process generating outcomes of a certain magnitude in
the model of Soto et al. (2014).




Figure A3 illustrates the process that generates the magnitude of an outcome.
Each latent cause & has associated with it a weight parameter wy, that represents its
contribution to the outcome. In the example shown in Figure A3, the parameter w;
associated with the active latent cause Z; has a value of 4. The value of wy is normally

distributed:
w, ~ Normal (MW,O"i) (6)

On any given trial, one or more latent causes may be active. The strength with

which all latent causes together contribute to the outcome is the sum of their individual

weights wy:
K

R = Eztkwk (7
k=1

In Figure A3, because the only active latent cause during trial 1 is Z, the value of
R, is the same as the weight associated with this latent cause, which is 4. The actual
magnitude of the outcome in trial #, or 74, is sampled from a normal distribution with

mean R,, and standard deviation oy:
T~ Normal(R,,Gf) : ()

This is represented in Figure A3 by a normal distribution centered at 4, from
which the actual value of 7; = 5 has been sampled.

Note that the same generative process is assumed for stimuli followed by a
specific outcome and by "no outcome" in this model. In the "no outcome" case, latent
causes can generate multidimensional stimuli through their consequential regions and

also an outcome of magnitude zero.



Implementation of the direction and correlation hypotheses

In consequential regions theory, the difference between integral and separable
dimensions is explained as arising from the use of two different hypotheses spaces of
regions (Austerweil & Griffiths, 2010; Shepard, 1987, 1991). For both the direction and
correlation hypotheses, separable dimensions arise by considering all consequential
regions with sides aligned to the axes of stimulus space and all possible sizes of those
sides. Equations (4) and (5) from the previous section are enough to describe the
hypothesis space of separable dimensions.

The difference between the direction and correlation hypotheses lies in the
hypothesis space believed to underlie dimensional integrality. According to the
correlation hypothesis, this hypothesis space includes all consequential regions with sides
aligned to the axes of stimulus space and with all sides of equal size. Again, Equations
(4) and (5) can describe this hypothesis space, with the constraint that sx; = sz ... = S
Thus, according to the correlation hypothesis, the hypothesis space for integral
dimensions is a sub-space of the one considered for separable dimensions.

According to the direction hypothesis, the hypothesis space includes regions of all
possible sizes in each side and also all possible orientations with respect to the main axes
of space. Because each region has the same dimensionality as the stimulus space,
Equations (4) and (5) are still useful to describe the positions and sizes of regions.
However, we must now also consider a parameter that determines degrees of rotation of
the region around its mid-point:

0, ~ Uniform(0,360) 9)



Thus, according to the direction hypothesis, the hypothesis space for separable
dimensions is a sub-space of the hypothesis space for integral dimensions. An interesting
possibility arises if we discretize the variable 6, allowing it to take only some values
between 0 and 360. A probability p is assigned to each of these values and the discretized
variable 6, follows a categorical distribution:

0, ~ Categorical(V,p) , (10)

where V' is the number of values that 6, could take and p is a vector of probabilities p;,
P2, ... pr, one for each of such values. Let v represent the probability of a value of 8 equal
to zero and let (1-v)/(V-1) be the probability for all other possible values of 6. Then the
separable case is obtained with v= 1, the integral case is obtained with v=1/V, and a
number of intermediate cases can be obtained for 1/ < v <1, as illustrated in Figure 10

of the main article.

Inference algorithm and simulation procedures

Inferences in our model are aimed at determining the expected value of the
outcome on test trial ¢, or 7+, given the current observation of the compound of stimuli xz,,
and the data observed on previous trials. That is, inference is focused on finding E(7; | X,
r1+1,Y), where 4 is a vector of all variables describing the model’s prior, which are
fixed in all simulations to the following values ¢ = {a=5,7=0.9,A=0.99,a=0,b =5,
Un =0, 0 =10"% u, =0, 6, = 1.0, = 0.01"%}, X is a matrix of observed stimuli (both
those observed so far and the current observation), and .-/ is a vector of previously

observed outcome values. In order to calculate the distribution p(r¢| X, r1.+1, ¢) and from



it the expected value of 7+, a number of hidden variables in the model need to be

integrated out:

p(n | X,m_],w)=f22 p(mZ,m,S,W,e | X,nz,_l,w)d(m,s,vv) (11)
Z 0

Since this integral is not tractable, we approximate it using a set of L samples
{ra.L, Zi.r, wiL, miz, sz, 012 } drawn from the posterior distribution using a Markov
Chain Monte Carlo (MCMC) procedure. Our MCMC algorithm involves a combination
of Gibbs and Metropolis-Hastings sampling (Gilks, Richardson, & Spiegelhalter, 1996).
The general strategy is to use a Gibbs sampler to cycle repeatedly through each variable,
sampling them from its posterior distribution conditional on the previously sampled
values of all the other variables. In the cases in which the conditional posterior is itself
intractable, we use Metropolis-Hastings to approximate sampling from the posterior.

The approximated expected value of 7+is the average of the sampled values of this
variable.

A complete description of the inference algorithm can be found in Appendix B of
(Soto et al., 2014), which was used without modification for simulations involving
separable dimensions. For simulations involving integral dimensions using the correlation
hypothesis, the only modification to the algorithm was that a single size s, was sampled
at each iteration for each consequential region. For simulations involving integral
dimensions using the direction hypothesis, the only modification to the algorithm was the
addition of a step in the Gibbs cycle in order to sample 6 (in all other cases, 6 was always
equal to zero). For this, we used an independence Metropolis-Hastings sampler with the

prior distribution defined in Equation (9) as the proposal distribution. Values of 8 from 0°

to 360° in steps of 15° were considered. At each iteration and for each consequential
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region in the current sample, a candidate 6, was sampled from the prior and accepted

with probability:

(12)

p(0)" =9,i)=min{1,p(x'Z’S’m’eikﬁ;)},

p(X1Z,5,m,0)

which was achieved by sampling u from Uniform(0,1) and setting 6,"' =6’ if
p(@,f” = H,i) >u
,and 6" =6, otherwise.

For the simulations presented in Figure 5 of the main article, the MCMC sampler
was run for 10,000 iterations so as to converge on the correct posterior distribution (“burn
in”). Then, the algorithm was run for another 2,000 iterations, from which every 20w
iteration was taken as a sample, for a total of 100 samples. This sampling interval was
used because successive samples produced by the MCMC sampler are not independent
from each other. Twenty-five independent chains were run for each condition, but we
only kept samples from chains in which the expected value of , was larger than 0.7 for
training stimuli followed by the outcome and lower than 0.3 for training stimuli followed
by no outcome. This ensured that the model had learned the training discrimination,
although the main predictions of each hypothesis did not change much when samples
from all chains were used or when other cutoff values were used.

For the simulations presented in Figure 8, we followed a procedure proposed by
Courville (2006) to obtain learning curves from the model: the MCMC algorithm was run
repeatedly with an increasing proportion of all training data in each case (e.g, all data up
to block 1, all data up to block 4, etc.). Each run involved 6,000 “burn in” iterations and

an additional 2,000 iterations, from which every 20a iteration was taken as a sample, for a
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total of 100 samples. Each simulated data point in Figure 8 is the average of thirty
independent simulations (chains).

The generalization gradients shown in Figure 1 and 10 were obtained by sampling
100,000 regions from the prior distribution, each containing the point {0,0}. Values of 8
from 0° to 360° in steps of 5° were considered. A discretized 201 x 201 grid of
equidistant points was used to evaluate the height of the gradient from the proportion of
sampled consequential regions containing each point.

We did not perform a sensitivity analysis trying to determine whether the
predictions reported here are robust across changes in the parameters of the prior.
Unfortunately, each simulation (i.e., chain) with the current implementation of our model
takes very long to run (from several hours to days, depending on the simulation), making
a sensitivity analysis computationally infeasible.

However, we note that the parameters in the prior should have little influence in
our predictions, compared to the influence of the data likelihood, for two reasons. First,
most of these parameters were chosen so that they would have little influence on
inferences, providing "flat" priors. This is the case for the parameters governing the
extent, location and orientation of consequential regions, which are the only aspects of
the model that differ across competing hypotheses. Second, the number of "training" data
points is large in most of our simulations (the exception being the first blocks of
Experiment 2), and when such large samples are involved the influence of the prior in
Bayesian inference is overwhelmed by the likelihood of the data.

Furthermore, the parameters of the prior are the same across all the simulated

models, meaning that differences in the predictions of different models are not due to
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differences in such parameters. Our approach was to use the same parameters in the prior
as used in all our previous simulations with the model, presented in Soto et al., (2014).
This strategy of attempting to explain all available experimental evidence using a single
set of parameter values has a long tradition in learning theory, and it provides a strong

test for the specific model being used.

Simulations with circular consequential regions

The results of simulations presented in the main article were obtained assuming
rectangular consequential regions. Although this is a common assumption in work with
the rational theory of generalization (e.g., Austerweil & Griffiths, 2010; Tenenbaum &
Griffiths, 2001), Shepard (1987) originally proposed that for integral dimensions
"psychological space should have no preferred axes. The consequential region is then
most reasonably assumed to be circular” (p. 1322). Circular regions have the same size in
any direction of psychological space, including the main axes, implementing the
correlation hypothesis but also the idea that integral axes are not primary.

It is possible that implementing the correlation hypothesis through circular
regions would correctly predict the results of our experiments. If this was the case, then it
would be incorrect to claim that our study supports the direction hypothesis over the
correlation hypothesis. To examine this possibility, we performed additional simulations
of experiments 1 and 2 using circular regions for integral dimensions.

As in the original version of the correlation hypothesis, each consequential region
k in this model is characterized by a vector of position parameters my and by a single size

parameter sx. As before, the position vector represents the center of the consequential



13

region, but now the size parameter represents the diameter of the circular consequential
region instead than its size in any particular direction of space. Stimuli are still assumed
to be sampled uniformly from the consequential region, so the probability of sampling

stimulus x4 from region ¢ is equal to:

p(xn.lck)= (13)

Ski 2°
(%)
for stimuli that fall within the consequential region (”xﬁ -m,| < 3") and zero otherwise.

To perform simulations using circular regions, we used the same sampling
algorithm used for squared regions. The only difference was that the stimulus likelihood
was computed according to Equation (12) instead of Equation 4 from Soto et al. (2014).
The simulation procedures were also the same as previously explained.

The results of simulations of Experiments 1 and 2 using a circular regions model
are presented in the top and bottom panels of Figure A4, respectively. The top panel
shows that the model correctly predicts higher responding to a2b3 than to a3b2 in
Experiment 1. However, the predicted difference is very small compared to the
predictions of the direction hypothesis (Figure 5a in the main article) and the difference
actually found in the generalization data (Figure 10 in the main article). Given the error in
our measurements, such a small predicted difference should have been very difficult to
detect in our experiment. Still, the correlation hypothesis implemented with circular
regions can at least qualitatively capture the results of Experiment 1.

The bottom panel of Figure A4 shows the predictions of the circular regions
model for Experiment 2. In this case, the model fails to capture the correct pattern of

results of a faster learning rate for the integral condition than for the separable condition.
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Unlike the predictions of the direction hypothesis (Figure 8a in the main article) and the

observed results (Figure 9 in the main article), the circular regions model does not predict

a consistent better performance in the integral condition throughout training.
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Figure A4. Simulations of Experiments 1 and 2 using circular consequential regions. ‘

In summary, our simulations suggest that a model implementing the correlation

hypothesis through circular regions could qualitatively capture the results of Experiment
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I—although predicting a very small effect that would have been difficult to detect in our
experiment—, but could not capture the results of Experiment 2. Thus, the results of our
experiments support the direction hypothesis as the best explanation of integrality over
the two versions of the correlation hypothesis proposed in the literature. Furthermore, the
direction hypothesis offers a number of additional advantages over both versions of the
correlation hypothesis, which are summarized in the general discussion section of the
main article. Importantly, circular consequential regions cannot explain the results of
compound generalization phenomena (Soto et al., 2014) and cannot explain why integral

dimensions are psychologically privileged (see discussion and references in main article).
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B. Possible confounds in Lachnit's (1988) experiment

As shown in Figure Bla, if stimuli along one of the dimensions used by Lachnit
(1988; Dimension A in the figure) were more similar to each other than stimuli along the
other dimension (Dimension B in the figure), then this would favor the pattern of results
expected for separable dimensions, because each critical test stimuli would share a
dimensional value with the closest training stimulus (see inside dotted ellipses in Figure
B1b). As shown in Figure B1b, if the two central values of one dimension (Dimension A
in the figure) were very close to each other, but far from the two extreme values in the
dimension, then this would favor the pattern of results expected for integral dimensions,
because each critical test stimulus would not share any dimensional value with the closest
training stimulus (see inside dotted ellipses in Figure B1b). Together, the patterns of
similarity shown in Figure 6 could explain the results obtained by Lachnit without

resorting to the distinction between integral and separable dimensions.
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Figure B1. Schematic representation of how scaling along a single dimension could have
affected the results of Lachnit's (1988) experiments. When one of the dimensions is
compressed in relation to the other (a), each test stimulus and its closest training stimulus
(grouped through an ellipse) share the same value in one dimension. When the two
middle values in one of the dimensions are very similar (b), each test stimulus and its
closest training stimulus do not share a value in either dimension.
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C. Supplemental methods

Instructions to participants

The experimenter told the participants that all necessary instructions would be
presented on the “instruction screens” included in the computer program. They then were

left to complete the experiment in a private room. The following instructions were

presented to the participants at the beginning of the training session (in Spanish):

Thank you for agreeing to participate in this research. In this experiment we are
studying the learning mechanisms of humans. Your participation is anonymous and
voluntary, and all your answers will be kept completely confidential.

We would like you to imagine that you are a dermatologist, that is, you are
someone who studies the skin of people. Suppose that you were hired by a company that
is developing new organic sunscreens, composed of certain kinds of microorganisms. You
suspect that some of these microorganisms may provoke maleficent effects (aging),
beneficent effects (rejuvenation), or neutral effects in the skin. In an attempt to discover
which microorganism causes beneficent, maleficent or neutral reactions, you tested
several sunscreens in laboratory animals (rats) and observed their reaction.

The results of each test will be shown to you on a series of screens. You will see a
separate screen for each test. In each screen you will be shown a microscope view of
each microorganism tested in a given animal. Next you will be asked to predict whether
the animal will have an aging reaction, a rejuvenation reaction or a neutral reaction.
Simply, click “aging” if you believe the animal will have an aging reaction, click
“rejuvenation’ if you believe the animal will have a rejuvenation reaction or click

“neutral” if you believe the animal will have no reaction. After you make your
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prediction, the computer will inform you on the reaction the animal actually had. You
will have to guess at first, but with the aid of the feedback, your predictions should soon
start to become more accurate. Please, pay attention to the different microorganisms
because they are very similar to each other. Remember that your goal as an allergist is to
learn which of these microorganisms is causing an allergic reaction.

You might see this experiment as a game and try to score as many points (correct
predictions) as you can. You will see the percentage of correct predictions you have
made near the bottom of the screen during the tests.

Later in the experiment, you will be asked to rate to what extent each of the
microorganisms cause aging, neutral or rejuvenation effects, based on the information
you have seen so far.

In summary, your task is to learn which microorganisms produce allergic

reactions in the animals.

The following instructions were presented to the participants at the beginning of
the testing session:

Next, we would like you to rate the degree to which various types of
microorganism will have aging, neutral or rejuvenation effects in the rats. To rate the
effect of each microorganism, use a scale from -5 to +5 points, where -5 means maximal
aging, 0 means neutral effect, and+5 means maximal rejuvenation. Please, click here to

continue
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The sample contains the following microorganism:

The sample contains the following microorganism:

What reaction you think this microorganism will cause in the rat’s skin?

Ageing Neutral Rejuvenation

CORRECT!

Rejuvenation

Estimate the degree to which this microorganism will cause ageing,
neutral or rejuvenation reaction.

Select a number between -5 to 5 and click on next button.

Figure C3. Example of the screens presented to the participants during training (top and
middle plots) and testing (bottom plot) in Experiment 1.
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D. Experiment 3

As indicated in the main article, the set of stimuli used in this study (see Figures
C1 and C2) offers the advantage that the same dimensions were used in both integral and
separable conditions. This feature of our study allowed us to focus specifically on the
effect of different types of dimensional interaction on multidimensional generalization,
controlling for the possible differential effect of unidimensional generalization across
conditions. Although this is an advantage of our study compared with most previous
research that has compared integral and separable dimensions (e.g., Dunn, 1983;
Goldstone, 1994; Lachnit, 1988; Soto & Wasserman, 2010), it also forced us to use
completely new stimuli and combinations of dimensions. We selected several pairs of
dimensions that have been reported to be integral (e.g., Dunn, 1983; Garner & Felfoldy,
1970; Lachnit, 1988; Monahan & Lockhead, 1977; Soto & Wasserman, 2010) and
assumed that cross combinations of some dimensions belonging to those pairs would
produce separable pairs. However, we have offered no independent evidence that the
specific pairs of dimensions used in our studies did indeed differ in their level of
separability and integrality. The goal of Experiment 3 was to provide an independent
assessment of the integrality and separability of the stimuli used in our experimental
setting.

The traditional way to determine whether a pair of dimensions is integral or
separable is through a series of converging operations (Garner, 1974). Among those
operations, one of the most commonly used is determining the metric of a
multidimensional spatial model that describes generalization or similarity data best (e.g.,

Dunn, 1983; Hyman & Well, 1967; Soto & Wasserman, 2010). Unlike other operational
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definitions, this metric is directly related to generalization phenomena, which is the focus
of the present study.

Thus, in the present experiment we focus on determining whether the metric of a
spatial model used to describe human similarity judgments for our stimuli (Figures C1
and C2) differed between integral and separable sets of dimensions. Finding such a
difference in metric would validate the stimulus manipulations used in Experiments 1 and
2.

In a spatial model, each stimulus is represented by its coordinates in a space with
K dimensions. This means that stimulus i is represented by K values arranged in the
vector X;. To compute the distance between stimuli i and j, dj;, from their coordinates x;
and x;, one can use the generalized Minkowski formula (e.g., Shepard, 1987; Melara,

Marks & Lesko, 1992), which states that:

< 1
dij=(2‘xik_xjkr) ) (1)
k=l

where 7 is the Minkowski exponent determining what metric is used in the spatial

representation. The city-block metric linked to separable dimensions is obtained when r
is equal to one. One can see from Equation (1) that in this case the distance between two
stimuli is the sum of their distances along each dimension. The Euclidean metric linked
to integral dimensions is obtained when r is equal to two. In this case, the distance
between two stimuli is computed using the Pythagorean formula.

To examine the metric of a spatial model that best describes the perceived
similarity of our stimuli, we asked different groups of participants to judge the
dissimilarity among all possible pairs of stimuli from each set shown in Figures C1 and

C2. Each participant provided dissimilarity scores for a single pair of dimensions (16
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stimuli, 120 stimulus pairs), which were analyzed using Multidimensional Scaling (MDS)
techniques. We expected that the metric that best describes dissimilarity data obtained
from integral dimensions (brightness/saturation, vertical/horizontal position, rectangle
width/height, and rotation around the X-axis/ rotation around the Y-axis) would be closer
to the Euclidean metric than the metric that best describes dissimilarity data obtained
from separable dimensions (saturation/horizontal position, vertical position/ brightness,
rectangle height/ rotation around the Y-axis, and rectangle width/ rotation around the X-
axis), which in turn would be closer to the city-block metric.

Method

Participants. A total of 64 undergraduate psychology students at the University of
Talca, Chile participated in the experiment for course credit. They had a mean age of
18.63 years (S = 0.24). They were tested individually and had no previous experience in
similar research.

Materials and procedure. The materials and strategy for stimulus construction of
Experiment 3 were identical to those of Experiment 1. In the present experiment, all 16
stimuli from each of the four integral and 4 separable stimulus sub-sets were used (see
Figures C1 and C2). Each participant was randomly assigned to one of these conditions
(n=8) and asked to rate the dissimilarity of all possible pairs obtained from the 16
stimulus sub-set.

The instructions were as follows: “In this task, you will be shown two images
side-by-side in the computer screen. Please, look at these images and judge how different
they are”. At the beginning of each trial, two stimuli appeared in the top part of the

computer screen, one to the left and one to the right of the middle line. Participants were
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asked to rate how different were the two images displayed on the screen by choosing a
number from a scale displayed below the stimulus pair. The scale was composed of
eleven points, with numeric labels going from 0 (minimal difference) to 10 (maximal
difference). Choices were recorded through a mouse-click on the selected dissimilarity
rating. To confirm their choice and move to the next stimulus pair, participants had to
click on a button labeled “next.”

In order to familiarize participants with the task, the experimental session began
with 20 practice trials involving randomly selected pairs. Next, the participants were
required to rate the dissimilarity of all pairs of different stimuli twice, once with each left-
right positioning of the stimuli in the screen, for a total of 240 trials.

Data analysis. Dissimilarity scores for the same stimulus pairs presented in
different spatial order were averaged before analysis, resulting in a total of 120
dissimilarity scores per participant. To find the best-fitting value of the Minkowski
exponent 7, these dissimilarity data were analyzed trough a constrained MDS model (see
Borg & Groenen, 2005; Heiser & Meulman, 1983). This type of analysis allowed both to
include assumptions in the model that were common to our previous experiments and to
make the results easier to interpret'. Specifically, we assumed correspondence (see Beals,
Krantz, & Tversky, 1968; Dunn, 1983), meaning that the pairs of dimensions
experimentally manipulated to build stimuli were represented as orthogonal axes in the
spatial model, corresponding to psychological dimensions perceived by people. This is
necessary to understand the interaction between the dimensions explicitly manipulated in

our experiments 1 and 2. We also assumed intra-dimensional homogeneity (Dunn, 1983;

' Additional analyses carried out using unconstrained non-metric MDS led to many degenerate solutions,
making the interpretation of the estimated Minkowski exponents difficult.



27

Heiser & Meulman, 1983), meaning that objects with the same level on an experimenter-
defined dimension shared the same level in the corresponding psychological dimension,
with the MDS solution forming a regular grid. This ensures that the final solution
respects the geometry of our simulations of experiments 1 and 2, and avoids the problem
that in two-dimensions the city-block metric becomes identical to the dominance metric,
except for a rotation and scaling (Shepard, 1991). Finally, we assumed that the function
relating distances in psychological space (djj) and perceived dissimilarity (J;) was

exponential (Shepard, 1987) and included parameters for translation (&) and scale () of
dissimilarities (i.e., 0; =+ Be™). We want to emphasize that these assumptions are not

unique to our study; each of them has been previously used by researchers to investigate
the spatial metric of stimulus dimensions (e.g., Hyman & Well, 1967; Ronacher & Bautz,
1985; Soto & Wasserman, 2010).

Previous research has shown that measures of badness of fit (e.g., stress) rarely
have a single minimum at a particular value of the Minkowski exponent. For separable
dimensions (Shepard, 1991) and for artificial data generated from a city-block metric
(Caporossi, 2008), the cost function has an inverted-V shape, with maximal stress around
r =2, but descending both when » <2 and » > 2. Likewise, for integral dimensions
(Shepard, 1991) and for artificial data generated from a Euclidean metric (Caporossi,
2008), the cost function can show at least two minima (W shape), one at each side of the
true value of » = 2, but none of them at the actual true value. This means that, depending
on the starting value of r, the optimization algorithm could find optimal solutions for »
that do not correspond to the actual underlying metric. To mitigate this problem, we

followed the strategy proposed by others (e.g., Lee, 2001; Okada & Shigemasu, 2010) of
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limiting 7 to a maximal value of 2.5. Finally, to avoid local minima, the optimization was
run 100 times, each time with a different set of starting coordinates and varying the initial
value of the Minkowski metric (randomly chosen from 0 to 2.5).

Most previous research trying to determine the best-fitting metric in an MDS
model has used group averages of the dissimilarity ratings as input to the analysis.
However, this approach is known to be problematic (see Ashby, Maddox, & Lee, 1994),
which led us to perform separate MDS analyses on the data provided by each participant.
The optimal exponents obtained from these analyses were used as input to a 2 (dimension
type: integral versus separable) x 4 (dimension pair) mixed-effects ANOVA with
dimension pair nested inside dimension type. This ANOVA allowed us to determine
whether there were significant differences in the Minkowski exponent estimated for

integral and separable dimensions.

Results and discussion

Figure D1 presents the mean best fitting values of » obtained with the constrained
MDS model for the integral (BS, VH, TW, and YX) and separable groups (SH, VB, TX,
and YW). It is clear that all integral pairs exhibited greater mean values of » than the
separable pairs. The ANOVA showed a reliable effect of dimension type, F (1, 56) =
9.680, p < 0.01, indicating greater overall » values in the integral than in separable
condition, and no reliable interaction effect between dimension type and dimension pair,
F (6, 56) < 1, indicating that the main effect of dimension type did not depend on specific

pairs of dimensions within each condition.
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The data depicted in Figure D1 indicate that the average estimated value for the
Minkowski exponent » was around 1.0 for condition Separable, and around 1.5 for
condition Integral. Thus, although the data from separable dimensions fit relatively well
with a metric close to city-block, the data from integral dimensions approximated a
metric intermediate between city-block and Euclidean. This finding is not too surprising,
for three reasons: (i) the relation between type of dimension and metric is known to be
only approximate and similar results have been reported earlier (e.g., Dunn, 1983;
Shepard, 1991; Ronacher & Bautz, 1985), (ii) simulated data generated from an
Euclidean metric is fit better by values of 7 lower than 2 than by a value of exactly 2
(Caporossi, 2008), and (iii) this is a common pattern of results that has been interpreted
as evidence that integral dimensions are true psychological dimensions that are usually,
but not always, processed holistically (Kemler-Nelson, 1993; see general discussion).

In conclusion, the MDS analyses suggest an overall difference in the metric used
by participants to judge dissimilarity among stimuli belonging to the integral and
separable conditions of our experimental setting. Since this difference is in the expected
direction of greater Minkowski exponents for the integral than for the separable
conditions, there is reason to believe that the experimental conditions of experiments 1
and 2 adequately manipulated the integrality and separability of the dimensions involved,

as it was intended.
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2.5
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BS VH TW YX TX SH YW VB

Integral Separable

Figure DI1. Mean estimated Minkoski exponent (r) for each of the dimension pairs
included in Experiment 3. An exponent of 2.0 represents an Euclidean metric and an
exponent of 1.0 represents a city-block metric. Error bars are standard errors of the mean.
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