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a b s t r a c t

Perceptual separability is a foundational concept in cognitive psychology. A variety of
research questions in perception – particularly those dealing with notions such as
‘‘independence,’’ ‘‘invariance,’’ ‘‘holism,’’ and ‘‘configurality’’ – can be characterized as spe-
cial cases of the problem of perceptual separability. Furthermore, many cognitive mecha-
nisms are applied differently to perceptually separable dimensions than to non-separable
dimensions. Despite the importance of dimensional separability, surprisingly little is
known about its origins. Previous research suggests that categorization training can lead
to learning of novel dimensions, but it is not known whether the separability of such
dimensions also increases with training. Here, we report evidence that training in a cat-
egorization task increases perceptual separability of the category-relevant dimension
according to a variety of tests from general recognition theory (GRT). In Experiment 1, par-
ticipants who received pre-training in a categorization task showed reduced Garner inter-
ference effects and reduced violations of marginal invariance, compared to participants
who did not receive such pre-training. Both of these tests are theoretically related to viola-
tions of perceptual separability. In Experiment 2, participants who received pre-training in
a categorization task showed reduced violations of perceptual separability according to a
model-based analysis of data using GRT. These results are at odds with the common
assumption that separability and independence are fixed, hardwired characteristics of fea-
tures and dimensions.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important task of perceptual systems is to produce a
re-description of the incoming sensory input, through a
representation that is useful for the tasks that are usually
encountered in the natural environment. One way to
characterize internal stimulus representations is to deter-
mine whether a set of ‘‘privileged’’ stimulus properties
exists, which can be used to describe a variety of stimuli,
and that are processed and represented independently
from one another. In perceptual science, an important

amount of effort has been dedicated to understanding
what aspects of stimuli are represented in such an
independent fashion (e.g., Bruce & Young, 1986; Haxby,
Hoffman, & Gobbini, 2000; Kanwisher, 2000; Op de
Beeck, Haushofer, & Kanwisher, 2008; Stankiewicz, 2002;
Ungerleider & Haxby, 1994; Vogels, Biederman, Bar, &
Lorincz, 2001).

There are many different conceptual and operational
definitions of what it means for two stimulus dimensions
to be independent (Ashby & Townsend, 1986), but perhaps
the most widely studied and influential type of indepen-
dence is dimensional separability. Separable stimulus
dimensions are those that can be selectively attended
and that directly determine the similarity among stimuli
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(Garner, 1974; Shepard, 1991). This is in contrast to inte-
gral dimensions, which cannot be selectively attended
and do not directly determine the similarity among stim-
uli. When stimuli vary along integral dimensions, their
similarity is directly perceived and the notion of dimen-
sions loses meaning.

There are two main reasons to believe that a complete
understanding of complex forms of visual cognition, such
as object recognition and categorization, will benefit from
a good understanding of perceptual separability. The first
reason is that many important questions in perceptual
science can be understood as questions about perceptual
separability of object dimensions.

For example, in the area of visual object recognition, the
question of whether object representations are invariant
across changes in identity-preserving variables (such as
rotation and translation; for reviews, see Biederman,
2001; Kravitz, Vinson, & Baker, 2008; Peissig & Tarr,
2007) is essentially the same as the question of whether
object representations are perceptually separable from
such variables. Shape dimensions that may be important
for invariant object recognition have been shown to be
separable from other shape dimensions and from view-
point information, according to traditional tests of sep-
arability (Stankiewicz, 2002).

A second example comes from the area of face percep-
tion. It has been proposed that a hallmark of human face
perception is that faces are processed in a configural or
holistic manner (for reviews, see Farah, Wilson, Drain, &
Tanaka, 1998; Maurer, Grand, & Mondloch, 2002; Richler,
Palmeri, & Gauthier, 2012). Configural or holistic face per-
ception can be seen as non-separable processing of differ-
ent face features (e.g., Mestry, Wenger, & Donnelly, 2012;
Richler, Gauthier, Wenger, & Palmeri, 2008; Thomas,
2001). Similarly, influential theories of face processing
have proposed that different aspects of faces, such as iden-
tity and emotional expression, are processed indepen-
dently (e.g., Bruce & Young, 1986; Haxby et al., 2000) and
these hypotheses are usually investigated using tests of
perceptual separability (e.g., Fitousi & Wenger, 2013;
Ganel & Goshen-Gottstein, 2004; Schweinberger &
Soukup, 1998; Soto, Musgrave, Vucovich, & Ashby, 2015).

Casting such research questions in terms of perceptual
separability is not only possible, but desirable. As we will
see below, perceptual separability has a precise formal def-
inition within multidimensional signal detection theory
(Ashby & Townsend, 1986; for a review, see Ashby &
Soto, 2015), which offers the advantage of providing strict
definitions to rather ambiguous concepts such as indepen-
dence, holistic processing, configural processing, etcetera
(e.g., Fitousi & Wenger, 2013; Mestry et al., 2012; Richler
et al., 2008). Furthermore, it allows us to determine
whether behavioral evidence of a dimensional interaction
is due to true perceptual interactions versus interactions
at the level of decisional processes.

The fact that a variety of research questions in visual
cognition can be characterized as special cases of the prob-
lem of perceptual separability suggests that a better under-
standing of this general problem, including explanations of
why some dimensions are separable and how they

acquired such status, would necessarily lead to a better
understanding of each of the special cases.

A second reason why an understanding of perceptual
separability is important to understand visual cognition
is that considerable evidence suggests that higher-level
cognitive mechanisms are applied differently when stimuli
differ along separable dimensions rather than along inte-
gral dimensions. Given the definition of perceptual sep-
arability, the most obvious of such mechanisms is
selective attention, which is more easily deployed to sep-
arable than to non-separable dimensions (e.g., Garner,
1970, 1974; Goldstone, 1994b). Other examples of pro-
cesses that might be applied differently to separable-di-
mension and integral-dimension stimuli are the rules by
which different sources of predictive and causal knowledge
are combined (Soto, Gershman, & Niv, 2014), as well as the
performance cost of storing an additional object in visual
working memory (Bae & Flombaum, 2013).

There is much evidence suggesting that the mecha-
nisms used by people to categorize stimuli vary depending
on whether or not categories differ along separable dimen-
sions. Some of this evidence comes from studies using
unsupervised categorization tasks, in which people are
asked to group stimuli in two or more categories without
feedback about their performance. When stimuli in
unsupervised categorization tasks vary along separable
dimensions, people rely almost exclusively on one-dimen-
sional strategies (Handel & Imai, 1972; Handel, Imai, &
Spottswood, 1980; Medin, Wattenmaker, & Hampson,
1987), even in tasks in which categories are not defined
by a simple one-dimensional rule and after being explicitly
told that the optimal strategy is to integrate information
from two dimensions (Ashby, Queller, & Berretty, 1999).
Furthermore, unsupervised learning is possible only when
the categories clearly differ along a single dimension
(Ashby et al., 1999). On the other hand, when stimuli vary
along integral dimensions, people show limited ability to
learn unsupervised categories and they do not show a
strong preference for one-dimensional rules. Instead, they
show a variety of strategies, including integration of infor-
mation from both dimensions (Ell, Ashby, & Hutchinson,
2012).

A similar pattern of results is found in supervised cat-
egorization tasks, in which categorization choices are fol-
lowed by feedback. When stimuli vary along separable
dimensions, learning a category structure in which good
performance requires attending to a single dimension is
much easier for people than learning an equivalent cate-
gory structure in which good performance requires
integration of information from two dimensions (e.g.,
Smith, Beran, Crossley, Boomer, & Ashby, 2010). There is
a large body of evidence suggesting that the one-dimen-
sional categorization task is learned through a rule-based
categorization system, whereas the information-integra-
tion task is learned through a separate procedural cat-
egorization system (for reviews, see Ashby & Maddox,
2005; Ashby & Valentin, 2005). On the other hand, when
stimuli vary along integral dimensions, a one-dimensional
task is not consistently easier to learn than an information-
integration task (Ell et al., 2012).
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Despite the importance of dimensional separability for
our understanding of both perception and high-level cog-
nition, surprisingly little is known about its origins.
Specifically, an important open question is whether sep-
arable dimensions can be learned and what are the condi-
tions that might foster such learning. Our previous review
of the literature suggests that this is a foundational ques-
tion in the field of object categorization and recognition.
If perceptual separability of a dimension can be learned
and we could understand the mechanisms by which such
learning happens, then we would not only be in a better
position to explain why some object dimensions are ‘‘spe-
cial,’’ in the sense of being processed independently, but
also how they became special (i.e., what conditions fos-
tered this learning) and why they should be processed in
such a privileged fashion (i.e., why it is adaptive for high-
level cognitive mechanisms to operate differently on these
representations).

In the following section, we introduce general recogni-
tion theory (GRT), a formal framework within which per-
ceptual separability can be defined and studied. This is
followed by a review of previous literature related to the
idea of separability learning.

1.1. GRT and a formal definition of perceptual separability

GRT is an extension of signal detection theory to cases in
which stimuli vary along two or more dimensions (Ashby &
Townsend, 1986; for a tutorial review, see Ashby & Soto,
2015). It offers a framework in which different types of
dimensional interactions can be defined formally and stud-
ied, while inheriting from signal detection theory the ability
to dissociate perceptual from decisional sources for such
interactions. For this reason, GRT is arguably the best frame-
work for the analysis and interpretation of studies aimed at
testing different forms of dimensional independence.

GRT assumes that repeated presentations of a single
stimulus produce different perceptual effects, which follow
some probability distribution. The most common applica-
tions of GRT are to tasks in which stimuli vary in two
dimensions, A and B, each with two stimulus components,
resulting in four stimuli: A1B1, A2B1, A2B1 and A2B2. Fig. 1 is
an example of a GRT model for such a 2 ! 2 design. In this
model, each stimulus generates perceptual effects accord-
ing to a different bivariate normal distribution. Each dis-
tribution is represented in the figure by a different
ellipse, which represents the set of all percepts that are eli-
cited with equal likelihood by the stimulus. For any ellipse
(and therefore any stimulus), percepts inside the ellipse
are more likely than percepts outside the ellipse. After
many presentations of a particular stimulus, the scatter-
plot of perceptual effects will take the shape of the ellipse
corresponding to that stimulus. However, in some cases,
presenting a stimulus will produce a percept that lies out-
side that stimulus’ ellipse, perhaps closer to the ellipse
corresponding to a different stimulus. In all cases, a deci-
sion must be made about what stimulus was actually pre-
sented. This decision process is modeled by assuming that
a participant sets decision bounds that divide the percep-
tual space into different regions, each corresponding to
the identification of a particular stimulus. The simplest

decision bounds are lines, like those shown in Fig. 1, which
are used to make decisions about both the level of dimen-
sion A and the level of dimension B.

In this framework, dimension A is perceptually sep-
arable from dimension B if the perceptual effects associated
with dimension A do not depend on the level of dimension
B. Mathematically this occurs if (and only if) the marginal
distribution of perceptual effects along dimension A is the
same across levels of B. Marginal distributions for dimen-
sions A and B are depicted at the bottom and left of Fig. 1,
respectively. The marginal distributions for dimension B
are identical, regardless of the level of A, meaning that
dimension B is perceptually separable from dimension A.
Conversely, the marginal distributions for dimension A
are farther apart for level 1 of dimension B than for level
2 of dimension B, meaning that dimension A is not per-
ceptually separable from dimension B.

There are other forms of dimensional interaction that
can be defined within GRT besides perceptual separability
(Ashby & Townsend, 1986). One of these is decisional sep-
arability. Dimension A is decisionally separable from
dimension B if the strategy used to decide the level of
dimension A does not depend on the perceived value of
dimension B. Mathematically, decisional separability holds
if (and only if) the decision bounds are linear and orthogo-
nal to each stimulus dimension. In Fig. 1, this means that
dimension A is decisionally separable from dimension B,
but dimension B is not decisionally separable from dimen-
sion A.

Finally, perceptual independence refers to dimensional
interactions within a single stimulus. Perceptual indepen-
dence holds for stimulus AiBj if the perceived value of the
A component is statistically independent from the per-
ceived value of the B component, which is true in the
multivariate normal case when the correlation between

Fig. 1. Example of a multivariate normal GRT model for a 2 ! 2 design (2
dimensions, each with 2 levels). Ellipses represent contours of equal
likelihood for the perceptual distribution of a particular stimulus.
Marginal distributions are presented in the left and bottom of the figure,
next to their corresponding dimension.
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dimensions is zero. In Fig. 1, the diagonally-oriented ellipse
for stimulus A1B2, representing a positive correlation
between dimensions, is a sign of violations of perceptual
independence for that stimulus.

In applications of GRT, inferences are made about these
types of dimensional interactions from behavioral data.
There is a number of theorems in the literature that link
each type of dimensional interaction with statistics that
can be computed from identification and categorization
data (Ashby & Maddox, 1994; Ashby & Townsend, 1986;
Kadlec & Townsend, 1992a, 1992b). Another approach is
to fit one or more GRT models directly to the data; the
parameter values of the best-fitting model can then be
used to characterize the pattern of dimensional interac-
tions (Ashby & Lee, 1991; Soto et al., 2015; Thomas,
2001). Here, we will use both the summary statistics and
model-based approaches to study perceptual separability.

There are clear advantages to using GRT for the study of
perceptual separability, instead of simply relying on tradi-
tional tests and operational definitions. The theory pro-
vides a formal definition of perceptual separability that
coherently links together a number of operational def-
initions. This permits the consistent study of the same
underlying concept through different tests and experimen-
tal designs. Furthermore, GRT allows the focus to be on
perceptual separability by dissociating its influence on
behavior from other forms of interactions. In particular,
here we will be interested in whether training in cat-
egorization tasks produces changes in perceptual sep-
arability, independently of any changes in decision
strategies. The analysis of dimensional interactions via
GRT is critical to achieving this goal, as it is known that tra-
ditional tests of separability are influenced by variables
such as experimental instructions (Foard & Kemler-
Nelson, 1984; Melara, Marks, & Lesko, 1992), which are
likely to affect decision strategies instead of perceptual
interactions (Ashby, Waldron, Lee, & Berkman, 2001).

1.2. Can separable dimensions be learned?

The hypothesis that learning might have an influence
on the separability of psychological dimensions is as old
as the concept of separability itself (see Garner, 1970). In
support of this hypothesis, developmental data have
shown that the ability to selectively attend to separable
stimulus dimensions develops with age. Stimulus dimen-
sions that are perceived as integrated wholes by pre-school
children are instead perceived as analytic components by
older children and adults (for a recent review, see
Hanania & Smith, 2010). However, it is not clear that such
developmental trends are a product of learning, or even of
increments in the separability of specific dimensions, as
they could be the product of developmental changes in
selective attention abilities. Evidence suggesting that color
experts can selectively attend to at least some integral
color dimensions more easily than non-experts more
clearly points towards a role of learning in determining
dimensional separability (Burns & Shepp, 1988).

Although little is known about what conditions might
foster learning of separable dimensions, one possibility is
that these conditions are met in categorization tasks. A

controversial hypothesis in the field of object categoriza-
tion and recognition is that these processes are often
accompanied by the creation of new features (Schyns,
Goldstone, & Thibaut, 1998).

There is a large body of work suggesting that cat-
egorization training does produce changes in perceptual
representations of the stimuli involved (for recent reviews,
see Goldstone, Gerganov, Landy, & Roberts, 2009;
Goldstone & Hendrickson, 2010). Stimulus dimensions that
are relevant for category discrimination become more dis-
tinctive, in what has been termed ‘‘acquired distinctive-
ness.’’ Operationally, acquired distinctiveness is observed
as an increase in discriminability along the category-rele-
vant dimension after categorization training. A special case
occurs when the greatest enhancement in discriminability
is seen at the boundary between categories, which can be
interpreted as a case of acquired categorical perception.
On the other hand, stimulus components that are irrele-
vant for category discrimination become less distinctive,
in what has been termed ‘‘acquired equivalence.’’
Operationally, acquired equivalence is observed as a
decrease in discriminability along the category-irrelevant
dimension after categorization training.

Some evidence suggests that categorization training
involving already-existing separable dimensions produces
both acquired distinctiveness along the relevant dimension
and acquired equivalence along the irrelevant dimension.
On the other hand, categorization training involving inte-
gral dimensions produces acquired distinctiveness in both
relevant and irrelevant dimensions (Goldstone, 1994b).
These results are consistent with the possibility that cat-
egorization training alters selective attention to the cat-
egory-relevant dimension. With separable dimensions,
the category-relevant dimension can be selectively
attended, whereas with integral dimensions, attention
must be paid to both dimensions. Still, the increase in dis-
criminability of integral dimensions was larger for the cat-
egory-relevant dimension than the category-irrelevant
dimension. Goldstone interpreted these results as suggest-
ing that categorization training produces differentiation of
integral dimensions.

However, using the same integral dimensions as
Goldstone (saturation and brightness), Foard and Kemler-
Nelson (1984) found evidence that learning effects in a
sorting task transferred across different sets of stimuli only
when the task-relevant dimension corresponded to the
dimensions identified by the experimenter (that is, either
saturation or brightness). If the task-relevant dimension
was rotated 45 degrees from the original dimensions,
learning did not transfer. This suggests that the integral
dimensions of saturation and brightness might be primary
axes in stimulus space (Smith & Kemler, 1978) despite the
fact that they usually interact during perceptual tasks (see
also Melara, Marks, & Potts, 1993). Thus, the results
reported by Goldstone (1994b) can be interpreted as an
increase in selective attention or as further differentiation
of already-existing psychological dimensions.

There is also evidence suggesting that categorization
training produces novel psychologically-differentiated
stimulus dimensions. Goldstone and Steyvers (2001) were
the first to report evidence for such an effect. In their study,
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complex novel stimulus dimensions were created by tak-
ing two faces and gradually morphing one into the other
in a continuous sequence. A two-dimensional face space
was then created by taking two such face dimensions
and factorially morphing each of their levels (see Fig. 2).
In their first experiment, Goldstone and Steyvers found
that training in a categorization task in which one novel
dimension was relevant and another was irrelevant trans-
ferred to a new task in which either the relevant or the
irrelevant dimension was replaced by a completely new
dimension. Further experiments showed that these effects
are not simply due to similarity-based transfer, but are bet-
ter explained as the outcome of dimension differentiation.
People were trained with two categorization rules using
the same pair of stimulus dimensions. After learning the
first categorization rule, better transfer was observed if
the second rule was a 90-degree rotation from the first
(i.e., the irrelevant dimension became relevant and vice
versa) than if it involved a 45-degrees rotation, despite
the fact that a smaller number of stimuli switched labels
in the latter case. The same effects were not found if the
stimuli could be described by relatively separable dimen-
sions from the start, such as the shape of eyes and mouth.
This suggests that the existence of previously available
separable dimensions impairs learning of new dimensions
during categorization tasks. If such dimensions do not
exist, however, any direction in stimulus space can become
a novel differentiated dimension, insofar as the stimulus
space is created through factorial combination of stimulus
sequences (Folstein, Gauthier, & Palmeri, 2012).

In contrast to these reports, there have been some fail-
ures to find any effect of categorization training on dimen-
sion differentiation when the stimuli were novel shapes
created by combining sinusoidal functions (Op de Beeck,
Wagemans, & Vogels, 2003). Even so, other evidence sug-
gests that the use of special categorization training proce-
dures that are thought to produce learning of more
‘‘robust’’ categories, can lead to dimension differentiation
using such novel shapes (Hockema, Blair, & Goldstone,
2005).

This line of research has been driven mostly by the
hypothesis that category learning is accompanied by the
learning of novel features and dimensions, but the ques-
tion as to whether such dimensions are truly separable
has remained unanswered. Although some results have
been interpreted as supporting the hypothesis of separabil-
ity learning (Goldstone & Steyvers, 2001; Hockema et al.,
2005), no previous experiment has directly tested this
hypothesis by actually assessing dimensional separability
of the relevant dimensions before and after categorization
training. The rotation test performed in some of these
studies (Folstein et al., 2012; Goldstone & Steyvers, 2001)
is suggestive of dimension learning, but it is not usually
considered a test of dimensional separability. Instead, it
is better described as a test of whether two dimensions
are ‘‘primary axes’’ (Smith & Kemler, 1978) – that is, psy-
chologically meaningful directions in stimulus space –,
even though they might combine in an integral fashion
(Grau & Nelson, 1988; Melara et al., 1993). The related con-
cepts of acquired distinctiveness and acquired equivalence
are also different from separability learning, as they refer
to changes in discriminability of the category-relevant
and category-irrelevant dimensions, respectively, while
separability learning refers to changes in the interaction
between both dimensions. Thus, tests of these two con-
cepts are also different from tests of separability learning.
As we have seen earlier, perceptually separable dimensions
are processed in special ways that are not true of all stimu-
lus dimensions. Thus, an important open question is
whether categorization training increases the separability
of a novel category-relevant dimension.

1.3. The present study

The goal of the present study was to evaluate whether
categorization training increases dimensional separability
of the category-relevant dimension, using traditional tests
of separability and GRT-based analyses.

We studied separability of completely novel dimen-
sions created through face morphing, as in the seminal

Fig. 2. Schematic representation of the procedure used here to create a two-dimensional space of morphed faces.
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work of Goldstone and Steyvers (2001). Using novel
dimensions built through morphing is convenient because
there is evidence suggesting that such dimensions are inte-
gral (Goldstone & Steyvers, 2001) and that there are no
psychologically-meaningful directions in a space con-
structed this way (Folstein et al., 2012). Furthermore,
morphing results in stimuli and dimensions that seem
more ecologically valid than completely artificial stimuli.

We created a two-dimensional space of faces and trained
participants in a categorization task that could be solved by
selectively attending to only one of those dimensions. Next,
we tested separability of the category-relevant dimension in
the context of a completely novel dimension, never seen
during training. We were interested in learning that is speci-
fic to the relevant training dimension, but not specific to the
stimuli and irrelevant dimensions seen during training. We
reasoned that when people are presented with new prob-
lems involving known dimensions, it is unlikely that such
problems involve exactly the same stimuli and dimensions
experienced earlier. Instead, new objects are likely to have
properties that have never been seen before. Furthermore,
finding that the separability of a dimension increases even
when it is tested with a completely new dimension implies
that there has been separability learning with the original
dimensions, which generalizes across changes in the cat-
egory-irrelevant dimension. This is a more general finding
than observing increases in separability only for the origi-
nally-trained dimensions.

Two different tasks were used to test perceptual sep-
arability. In Experiment 1, we used the popular Garner fil-
tering task and evaluated separability using a summary
statistics approach to GRT analyses. In Experiment 2, we
used an identification task and evaluated separability by
directly estimating the parameters of a GRT model from
the data using maximum likelihood estimation, followed
by tests of separability performed on such estimates.

2. Experiment 1

Perhaps the most popular test of dimensional separabil-
ity is the Garner filtering task (Garner, 1974), in which par-
ticipants classify a number of stimuli according to their
value on some target dimension as fast as possible.
Participants complete two different conditions in different
blocks. In control blocks, the stimuli vary only on the target
dimension, whereas in filtering blocks, the stimuli also
vary on an irrelevant dimension. If the target dimension
is separable from the irrelevant dimension, then partici-
pants should be able to selectively attend to the target
dimension during filtering blocks, and performance should
therefore not differ significantly from that found during
control blocks. On the other hand, if the target dimension
is not separable from the irrelevant dimension, then per-
formance should suffer in the filtering condition compared
to the control condition, what is usually called an interfer-
ence effect.

Although the Garner filtering task is popular and intui-
tive, by itself it provides only an operational test of percep-
tual separability, without a rigorous theoretical
justification. Fortunately, the data gathered from a

Garner filtering task can be used to compute a number of
statistics that are known to be related to perceptual sep-
arability as defined within GRT. When the 2 ! 2 design dis-
cussed earlier is used in a Garner filtering task, participants
must report the perceived level of the relevant dimension
A while ignoring the level of dimension B. Let ai denote
the event that the participant responded that the level of
dimension A was i, where i = 1 or 2. Then a simple statistic
that can be computed from the response frequencies is the
proportion of correct responses for each of the four stimuli
during filtering blocks, or p(ai|AiBj). Marginal response
invariance holds when the probability of identifying the
correct level of the relevant dimension A does not depend
on the level of B, that is, when

pðaijAiB1Þ ¼ pðaijAiB2Þ

for both i = 1, 2. Ashby and Townsend (1986) showed that if
decisional and perceptual separability hold for dimension A,
then marginal response invariance must hold as well.

Response times (RTs) are also usually gathered in a
Garner filtering task. Ashby and Maddox (1994) developed
an extended GRT framework to analyze such data. They
assumed that classification RT decreases with the distance
between the perceptual effect and the decision bound. If
this RT-distance hypothesis holds then the interference
effect in RT is theoretically linked to perceptual separabil-
ity if two more assumptions are made: first, that decisional
separability holds and second, that the perception of each
stimulus is the same in the filtering and control conditions
(i.e., perception is context free).

Ashby and Maddox also showed that the presence of an
interference effect is generally not diagnostic of violations
of perceptual separability. A much better test is given by
marginal RT invariance: the finding that the distribution
of RTs at each level of the target dimension is not affected
by variations in the irrelevant dimension. Specifically, let
p(RTi 6 t|AiBj) denote the probability that the RT is less
than or equal to some value t on trials when the participant
correctly classified the level of component A. Then mar-
ginal RT invariance is found when

pðRTi 6 tjAiB1Þ ¼ pðRTi 6 tjAiB2Þ;

for i = 1 and 2 and for all t > 0. If the RT-distance hypothesis
and decisional separability both hold, then marginal RT
invariance holds if and only if perceptual separability holds
(Ashby & Maddox, 1994). That is, observing marginal RT
invariance would indicate that perceptual separability
holds and observing violations of marginal RT invariance
would indicate that perceptual separability is violated.
This makes marginal RT invariance the strongest test of
perceptual separability that can be computed from a
Garner filtering task.

Experiment 1 used the Garner filtering task to explore
whether categorization training increases the separability
of a category-relevant dimension. Participants in the
experimental group received three sessions of training in
a categorization task involving morphed faces that varied
in two novel dimensions, whereas participants in the con-
trol group did not receive such training. During the test
session, both groups performed a Garner filtering task with
stimuli varying along the category-relevant dimension and
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a new irrelevant dimension never seen before by either
group. Perceptual separability was evaluated through both
Garner interference effects and marginal invariance tests
performed on response proportions and correct RTs.

2.1. Materials and methods

2.1.1. Participants
Forty-nine undergraduates at the University of

California Santa Barbara voluntarily participated in this
experiment in exchange for class credit or a monetary
compensation. The experimental group consisted of nine-
teen participants and the control group consisted of thirty
participants. More participants were included in the con-
trol group because we expected that a large proportion of
them would be unable to master the difficult test task.

2.1.2. Stimuli
Stimuli were created from 6 parent images chosen from

a database of 300 computer-generated Caucasian faces
described by Oosterhof and Todorov (2008), created using
the Facegen Modeller program (http://facegen.com),
Version 3.1. From the original database, 33 male faces were
chosen that had similar eyebrow color and similar levels of
facial fat. The chosen images were converted to grayscale
and their intensity histograms were equalized. This
ensured that stimuli along the resulting dimensions varied
in shape features, but not in simpler features such as skin
color and brightness. Following the original study by
Goldstone and Steyvers (2001), similarity measures were
obtained from these stimuli using the efficient method
described by Goldstone (1994a). Three pairs of faces with
mean similarity values within 15% of each other were cho-
sen as parents, to ensure that the dimensions created from
them had relatively similar salience. A second criterion
was that the parent pairs should not be discriminable
along an easily verbalizable dimension, such as degree of
femininity/masculinity or head width.

Morphs with different proportions of each parent face
were generated in MATLAB using the factorial procedure
of Goldstone and Steyvers (2001). The procedure is illus-
trated in Fig. 2. In the first step, pairs of faces are chosen
to be the parents for a dimension. In the second step, each
dimension is created by generating morphs with different
proportions from each pair of parents. In the example
shown in the figure, five levels are created for each dimen-
sion by creating morphs with 0%, 25%, 50%, 75% or 100% of
the second parent. These levels were chosen to illustrate
the procedure; they are not the levels used in our experi-
ment. After two face dimensions are created, the third
and final step is to generate a two-dimensional space by
factorially combining each of the faces in each dimension
with each of the faces in the other dimension. As shown
in the figure, these two-dimensional morphs include 50%
from each of the one-dimensional faces. In the example,
the final two-dimensional face has a level of 25% in one
dimension and 75% in the other dimension.

Dimensions were created using a continuous sequence
of 19 morphs for each pair of parents, with percentages
of parent 1 equal to 0%, 6%, 14%, 20%, 24%, 30%, 32%, 38%,
42%, 50%, 58%, 62%, 68%, 70%, 76%, 80%, 86%, 94%, and

100%. The three resulting dimensions were used to create
two-dimensional spaces by factorially combining all levels
of one dimension with all levels of a second dimension.

2.1.3. Procedure
Participants in the experimental group were exposed to

3 sessions of pre-training in the categorization task shown
in Fig. 3a. This task has been used in the past to show
learning of new dimensions (Folstein et al., 2012) and
has the advantage that the circular arrangement of stimuli
de-emphasizes the dimensional structure of the stimuli.
The sessions were run within a span of three days and no
more than two sessions were run on the same day.
Consecutive sessions were separated by at least 1 h and
at most 25 h, with the exception of a single pair of sessions
that was separated by 10 min. At the beginning of each ses-
sion, instructions were displayed on the screen indicating
that the participant’s task was to categorize faces as accu-
rately as possible into two different categories (clubs)
based purely on physical appearance. The instructions also
explained the structure of each trial and how to report a
categorization response. Participants were warned that
they would need to guess the correct answer early in train-
ing, but they would get more accurate as the experiment
progressed.

Each pretraining session consisted of 9 blocks of 72 tri-
als each, for a total of 648 trials. Each stimulus (36 per cat-
egory) was presented once in a block, with the order
randomized within the block. There were voluntary breaks
of 1 min between blocks, which the participant could finish
by clicking on a button labeled ‘‘continue.’’

Each pretraining trial started with the presentation of a
white cross in the middle of a black screen for 500 ms.
Immediately afterwards a face stimulus was presented in
the middle of the black screen until the participant pressed
one of the two response buttons or a time deadline of 4 s
was reached, whichever happened first. Then the partici-
pant received feedback about the correct response. For cor-
rect responses, the word CORRECT was presented for
500 ms, in green font color in the middle of the screen,
accompanied by a pleasant chime presented through the
headphones. For incorrect responses or if the time deadline
was reached, the word INCORRECT was presented for
500 ms, in red font color in the middle of the screen,
accompanied by an unpleasant buzzer presented through
the headphones. This was followed by a 1 s inter-trial
interval, during which the monitor was completely black.

Participants in both groups completed one session of a
Garner filtering task illustrated in Fig. 3b. This task used
four stimuli, which resulted from the factorial combination
of two levels of the category-relevant dimension and a
novel dimension. As shown in the figure, levels 5 and 15
from each dimension were used and none of the com-
binations of levels was used before in the categorization
task. At the beginning of the session, instructions were dis-
played indicating that the participant’s task would be to
categorize four stimuli into two different groups based
on physical appearance. The four stimuli were displayed
in the screen, grouped in the two categories that would
be used during the task. Participants were asked to study
the two groups of stimuli carefully before continuing with
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the experiment, as a way to highlight in a non-verbal way
what aspects of the stimuli were relevant and irrelevant for
the task. The instructions also explained the structure of a
categorization task and asked participants to respond as
accurately and as fast as possible.

The session consisted of 16 blocks of 32 trials each, for a
total of 512 trials. There were three block types that dif-
fered on the stimuli presented. During baseline blocks,
only two stimuli were presented, which varied in the level
of the category-relevant dimension, but for which the

irrelevant dimension was held constant. Each stimulus
was repeated 16 times. There were two types of baseline
blocks, one for each level of the irrelevant dimension.
During filtering blocks, all four stimuli were presented,
each repeated 8 times. Trials were randomized within
blocks.

Each type of baseline block was repeated 4 times and
the interference block was repeated 8 times. Blocks were
grouped in pairs of one baseline block and one interference
block; there were a total of 8 block pairs in the session. The

(a) (b)

(c)

Fig. 3. Schematic representation of the tasks used in the experiments presented here. Each point represents a different stimulus presented during a task.
The requirements of the task are represented by lines that divide the stimuli in response classes. Such response classes are also labeled for each task (X and
Y; A and B; R1–R4).
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order of each block in the pair was counterbalanced and
the order of presentation of the block pairs was semi-ran-
domly determined for each participant, with the constraint
of alternating the baseline block type in the sequence of
block pairs.

Trials in the Garner filtering task had the same overall
structure as trials in the pre-training categorization task.
However, the response deadline was set to 2 s, after which
the phrase TOO SLOW! was presented in the middle of the
screen in red font color, accompanied by an unpleasant
buzzer presented through the headphones.

2.2. Results and discussion

The experimental group showed accurate performance
in the final session of the categorization pre-training task,
with a mean proportion of correct responses of 0.81
(sd = 0.1). The Garner filtering task was quite difficult to
learn, especially for participants in the control group, with
some participants showing chance performance through-
out the task. To minimize differences in task performance
between the control and experimental groups, and because
GRT is only applicable to asymptotic performance and not
to learning data, for each participant we only included data
starting from the first block pair in which the proportion of
correct responses was at least 0.75. This excluded from the
analysis all data from 14 participants in the control group
(9 of these showed performance that seemed completely
random) and 2 participants in the experimental group,
who never reached such a high level of performance.
Thus, the results presented here are based on data from
16 participants in the control group and 17 participants
in the experimental group.

Analyses of RTs (measured in seconds) were performed
only on data from correct trials. We used quantiles (med-
ian and deciles) to characterize the RT distribution from
each participant, which were then used in group-level
analyses. Quantiles are asymptotically normal and
unbiased estimators, so they can be used to obtain group
averages and to perform statistical analyses involving
assumptions of normality (Van Zandt, 2002).

2.2.1. Garner interference effects
An interference score was computed for each partici-

pant by subtracting accuracy during control blocks from
accuracy during filtering blocks. The mean of these inter-
ference scores is plotted separately for each group in
Fig. 4a. It can be seen that there is a Garner interference
effect in accuracy for the control group, with the mean
interference score ð!x ¼ :033Þ being significantly higher
than zero according to a single-sample t-test, t(15) = 2.84,
p < .01, d = .71. On the other hand, the Garner interference
effect in accuracy for the experimental group is much
smaller ð!x ¼ :002Þ and not significantly greater than zero,
t(16) = .39, p > .1, d = .09. The difference between groups
ð!x1 % !x2 ¼ :031Þ was also found to be significant according
to a two-sample t-test, t(31) = 2.41, p < .05, d = 0.87.

Traditionally, the analysis of Garner interference effects
in RT is performed on the median values from the relevant
RT distributions of each participant. In line with this

standard procedure, we first computed the median RT for
each participant for both filtering and baseline blocks. An
interference score was computed by subtracting median
RT during control blocks from median RT during filtering
blocks. The mean of these interference scores is plotted
separately for each group in Fig. 4b. The results mirror those
found with accuracy: the control group shows a Garner
interference effect that seems to be absent in the experi-
mental group. The mean interference score ð!x ¼ :023Þ was
significantly greater than zero in the control group,
t(15) = 2.06, p < .05, d = .52, but not in the experimental
group ð!x ¼ :003Þ, t(16) = .52, p > .1, d = .13. However, the
difference between groups ð!x1 % !x2 ¼ :02Þwas only margin-
ally significant, t(31) = 1.63, p = .057, d = .59.

2.2.2. Marginal invariance tests
During each baseline block, participants repeatedly saw

only two stimuli that shared the same value on the irrele-
vant dimension, so they had time to adjust their decision
strategy to the demands imposed by those specific stimuli.
In other words, participants might have used different
decision bounds in each type of baseline block, which
would violate the assumption of decisional separability
required by the theorems linking marginal invariances
with perceptual separability (Ashby & Maddox, 1994;
Ashby & Townsend, 1986). This is less likely to happen dur-
ing filtering blocks, in which participants saw all four stim-
uli randomly interspersed. For this reason, analyses of
marginal invariances were performed only on data from
filtering blocks.

In the analysis of marginal response invariance, for each
participant and each level of the relevant dimension we
computed the difference in accuracy across the two levels
of the irrelevant dimension. The resulting value represents
the deviation from marginal response invariance at one
level of the relevant dimension, so there were two of these
scores for each participant (one for each value of the rele-
vant dimension). The absolute values of these two scores
were added together to obtain a single score per partici-
pant, representing violations of marginal response invari-
ance. The means of these scores are plotted separately for
each group in Fig. 4c. Note that we expect these means
to be above zero even if there are no violations of marginal
response invariance, because in that case each individual
score would be the sum of two absolute random devia-
tions. Thus, testing whether each mean is different from
zero using traditional statistical tests is not appropriate.
To test whether there were significant violations of mar-
ginal response invariance, we performed a permutation
test by randomly shuffling the levels of the irrelevant
dimension in each participant’s data 500 times. The mean
scores representing violations of marginal response invari-
ance were computed from each of these shuffled data sets,
resulting in an empirical distribution of mean scores under
the null hypothesis of no violations of marginal response
invariance. These permutation tests revealed significant
violations of marginal response invariance in both groups
(both p < .01).

More importantly, the comparison between groups
clearly showed that violations of marginal response
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invariance were higher in the control group than in the
experimental group ð!x1 % !x2 ¼ :15Þ, t(31) = 2.51, p < .01,
d = .9.

Remember that for marginal RT invariance to hold, the
distribution of RTs for a given level of the relevant dimen-
sion should be the same across levels of the irrelevant
dimension. Thus, unlike the Garner interference test,
which requires a comparison of only median RTs, the mar-
ginal RT invariance test requires comparing full RT dis-
tributions. With this goal in mind, we started by
computing the deciles of the RT distribution for each par-
ticipant and each stimulus. As indicated earlier, quantiles
(which include deciles) have been previously recom-
mended for the analysis of RT distributions due to their
good statistical properties (Van Zandt, 2002). Each set of
deciles summarizes the RT distribution for one level of
the relevant dimension and one level of the irrelevant
dimension. If marginal RT invariance holds, we would
expect that corresponding deciles for a given level of the
relevant dimension would be the same across levels of
the irrelevant dimension. Using dijk to represent the kth
decile from the RT distribution of a stimulus with level i
in the relevant dimension and level j in the irrelevant
dimension, we computed a single measure of deviations

from marginal RT invariance for each participant in the fol-
lowing way:

V ¼
X2

i¼1

X9

k¼1

jdi1k % di2kj;

where |x| represents the absolute value of x. The mean of
these scores is plotted separately for each group in
Fig. 4d. It can be seen that violations of marginal RT invari-
ance were higher in the control group than in the experi-
mental group ð!x1 % !x2 ¼ :64Þ with the difference being
statistically significant, t(31) = 1.71, p < .05, d = 0.61.

As in the analysis of marginal response invariance, test-
ing whether the observed deviations from marginal RT
invariance were statistically significant within each group
required performing a permutation test. The test followed
the same procedure as before, but computing the V statistic
for each permuted data set. The results of these per-
mutation tests revealed significant violations of marginal
RT invariance in both groups (both p < .01).

Fig. 5 partially captures the differences between groups
in RT distributions. The figure plots the mean of the decile
estimates separately for the control (top panels) and
experimental groups (bottom panels) and for each level

a b

c d

Fig. 4. Results of the Garner interference and marginal invariance tests carried out in Experiment 1. Error bars represent standard error of the mean.
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of the relevant dimension (level 1 in left panels, level 2 in
right panels). The distributions for the two levels of the
irrelevant dimension are plotted using different colors.
For each panel, the magnitude of violations of marginal
RT invariance is represented by the horizontal distance
between the two distributions. Note that such violations
are apparent in both the experimental and control groups,
even though these averaged curves can only capture devia-
tions from marginal RT invariance that are consistent
across participants. The plot also captures some of the dif-
ferences between groups, especially in the lower half of the
distributions (the first five deciles, corresponding to cumu-
lative proportions of 0–50%). For level 1 of the relevant
dimension (two left panels), we see that for the first five
deciles (0–50%) there is almost no difference between the
two distributions for the experimental group (bottom-left
panel), whereas there are considerable differences for the
control group (top-left panel). For the last five deciles
(60–100%), differences between the distributions start
being apparent in the experimental group, but these are
much smaller than those found in the control group. The
differences between groups are not so clear-cut for level
2 of the relevant dimension, corresponding to the two right

panels. For the first five deciles (0–50%), differences
between distributions are slightly larger in the control
group than the experimental group, but this pattern seems
to reverse in the last five deciles (60–100%).

In summary, both the size of the Garner interference
effect and the magnitude of violations of marginal invari-
ance were smaller in the experimental group, which
received categorization pre-training, than in the control
group, which did not receive such pretraining. This differ-
ence between groups was found in the analysis of both
accuracy and RT data and suggests that categorization
training increased the perceptual separability of the cat-
egory-relevant dimension.

On the other hand, permutation tests revealed viola-
tions of marginal response and RT invariance in both
groups, suggesting that categorization training does not
produce complete dimensional separability.

A problem with the present experiment is that the
Garner interference and marginal invariance tests both rely
on the assumption that decisional separability holds
(Ashby & Maddox, 1994). Although it has been found that
this assumption is valid in some cases (Maddox & Ashby,
1996), it is possible that categorization training had an

Fig. 5. Mean estimates of deciles for each group (Exp = experimental, Cont = control) and level of the relevant dimension (number in the subpanel titles).
Different colors represent different levels of the irrelevant dimension. If marginal RT invariance held, lines within each panel should not differ. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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impact on the decision strategies used by participants
rather than on perceptual separability. One way to better
dissociate perceptual and decisional separability is by
using an identification task, in which participants are
asked to report the perceived level of both dimensions on
each trial. GRT analyses of identification data do not
require assuming decisional separability to test for percep-
tual separability, instead it is possible to simultaneously
test the validity of both forms of dimensional interaction.
The goal of Experiment 2 was to evaluate whether cat-
egorization pre-training increases perceptual separability
using an identification task.

3. Experiment 2

The present experiment evaluated separability learning
using GRT analyses of data from an identification task.
Participants with experience in a categorization task per-
formed a 2 ! 2 identification task using stimuli created
from the category-relevant dimension and a novel stimu-
lus dimension, as illustrated in Fig. 3c. Their performance
was compared to that of participants without experience
with the category-relevant dimension.

The 2 ! 2 identification task used here is similar to the
classification task used in the previous experiment, in that
it includes four stimuli that result from the factorial com-
bination of two levels of dimension A and 2 levels of dimen-
sion B (compare Fig. 4b and c). The main difference is that in
the identification task participants must report not only the
perceived level on dimension A, but also the perceived level
on dimension B – that is, they must identify the specific
stimulus presented during a particular trial. The most
important advantage of the identification task over the
Garner filtering task used before is that it allows us to dis-
sociate perceptual and decisional types of separability.

Currently, the best available approach within the GRT
framework for the analysis of dimensional interactions, at
least for 2 ! 2 identification data, is a model-based
approach using GRT-wIND (GRT with INdividual
Differences; Soto et al., 2015). GRT-wIND is an extension
of GRT that assumes that all participants share similar per-
ceptual representations. More specifically, the model
assumes that the same stimulus dimensions are used by
all participants to represent a set of stimuli. In most cases,
these dimensions are assumed to correspond to those
explicitly manipulated by the experimenter in an identifi-
cation task (for more on the assumption of correspon-
dence, see Ashby & Townsend, 1986; Dunn, 1983; Soto
et al., 2014), which are usually manipulated because they
are suspected to be psychologically privileged. A conse-
quence of assuming the same dimensional representation
across people is that perceptual separability (and percep-
tual independence) in GRT-wIND either holds for all par-
ticipants or is violated for all participants.

On the other hand, GRT-wIND also assumes that different
participants may allocate different amounts of attention to
each stimulus dimension and may use different decision
strategies. Individual differences in attention are modeled
by increasing or decreasing perceptual noise on each dimen-
sion. For example, attention to dimension A would result in

less perceptual noise and easier discrimination of percepts
along that dimension. Although attention might change
how well an individual can discriminate a dimension, it does
not affect whether two dimensions perceptually interact.
Individual differences in decisional strategies are modeled
by having a different set of two decision bounds for each
individual. For this reason, decisional separability is a phe-
nomenon that can hold in some individuals and fail in
others, or even vary for a single individual as a function of
factors such as training with a task.1

GRT-wIND solves a number of problems that have been
recently identified in traditional GRT models. Importantly,
while traditional GRT models have problems dissociating
perceptual and decisional forms of separability in the
2 ! 2 identification design (e.g., Mack, Richler, Gauthier,
& Palmeri, 2011; Silbert & Thomas, 2013), we have shown
that GRT-wIND does not suffer from these problems (see
appendix of Soto et al., 2015).

A disadvantage of using GRT-wIND to analyze data from
an identification task is that the model has not been linked
to RT data yet. Recent developments in GRT have provided
tools to analyze RT data from identification tasks
(Townsend, Houpt, & Silbert, 2012), but these tools cannot
dissociate between perceptual and decisional separability,
like GRT-wIND does. Because dissociating perceptual and
decisional separability was one of the goals of the present
experiment, here we will focus exclusively on the analysis
of response frequencies using GRT-wIND.

Theorems linking dimensional interactions with sum-
mary statistics are still not available for GRT-wIND, but
the full model can be fit to data from all participants using
maximum likelihood estimation. Then, the analysis of
dimensional interactions can be easily performed using sta-
tistical tests on maximum likelihood estimates. In
Appendix, we include a more formal description of GRT-
wIND, the procedures used to find maximum-likelihood
estimates of its parameters, and statistical tests for
the analysis of dimensional interactions. Importantly,
Appendix describes a new statistical test that allows
between-group tests of differences in perceptual separabil-
ity, decisional separability and perceptual independence,
which makes it possible to directly compare perceptual
separability in the experimental and control groups of the
present experiment.

3.1. Materials and methods

3.1.1. Participants
The same 19 participants from the experimental group

of Experiment 1 were included in the present experiment.

1 An alternative model, which makes equivalent predictions to GRT-
wIND, assumes that all participants share the same decision bounds but
every participant attends to different stimulus dimensions (which can be
oriented in any direction of stimulus space). We did not explore this model
for two reasons. First, following standard applications of signal detection
theory, we assumed that participants have more control over their decision
strategies than over their sensory and perceptual processing of the
stimulus, whereas this alternative model assumes the opposite. Second,
fitting the alternative model would be difficult, because it requires finding
what ‘‘privileged’’ directions in space should be allowed to stretch and
shrink for each participant.
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An additional 25 undergraduates from the University of
California Santa Barbara were recruited for the control
group. They voluntarily participated in exchange for class
credit.

3.1.2. Stimuli
Stimuli were the same as those described for

Experiment 1.

3.1.3. Procedure
Participants in the experimental group completed 3 ses-

sions of pre-training in a categorization task, plus one ses-
sion of testing in a Garner interference task, as described
previously. Participants in both groups then completed
one session of the identification task illustrated in Fig. 3c.
As in Experiment 1, the task used four stimuli resulting
from the factorial combination of two levels of the cat-
egory-relevant dimension and two levels of a novel dimen-
sion. In contrast to Experiment 1, levels 7 and 17 from each
dimension were used. Note that none of the combinations
of these levels was experienced before by the experimental
group.

At the beginning of the session, instructions were dis-
played indicating that the participant’s task would be to
identify four faces, each one of them assigned to a unique
response key. The four stimuli were displayed on the
screen, together with their key assignments. The instruc-
tions also explained the structure of a trial in the task,
emphasizing that stimuli would be presented very briefly,
and that participants should respond as accurately and as
fast as possible.

The session consisted of 45 blocks of 20 trials each, for a
total of 900 trials. Each block involved 5 presentations of
each of the four stimuli and trials were randomized within
blocks. Each trial started with the presentation of a white
cross in the middle of a black screen for 500 ms.
Immediately afterwards a face stimulus was quickly
flashed in the middle of the black screen for 34 ms. This
short presentation time was chosen to make the task more
difficult, as errors are critical to an analysis using GRT-
wIND. Participants were given 2 s to report the presented
face by pushing the correct button and they received feed-
back about the correctness of their responses as in
Experiment 1. If the participant did not respond within
2 s, the trial ended with the message ‘‘TOO SLOW!’’ dis-
played in the middle of the screen and accompanied by
an unpleasant buzzer through the headphones.

3.2. Results and discussion

The data from 11 participants (9 from the control group
and 2 from the experimental group) were excluded from
the analysis because their performance was near chance
(below 27% correct) by the end of the experiment. GRT is
a model of asymptotic performance, not of learning, so it
is important to discard data during the learning period
when estimating individual participant confusion matri-
ces. Toward this end, learning curves were obtained by
averaging performance within a moving window of 50
trials, starting with the average of trials 1–50, moving the
window one trial up in each step (2–51, 3–53, and so

on), and ending with the average of the last 50 trials. An
exponential function was fit to the resulting average learn-
ing curves using least-squares estimation. The point in the
best-fitting exponential curve where the slope was smaller
than 0.001 for the first time was used as a cutoff: only data
after this point were used to estimate individual confusion
matrices.

GRT-wIND was fit to the data from individual confusion
matrices using the procedures outlined in Appendix. A
separate fit was performed for the data of each group. To
facilitate finding the global maximum of the likelihood
function instead of a local maximum, the optimization
was run 60 times, each time with different random starting
values for the parameters and the solution with highest
maximum likelihood was chosen for further analysis.

The parameter estimates from the best-fitting model
were used to estimate response probabilities for each cell
in each individual participant’s confusion matrix. These
estimated probabilities could then be compared with the
corresponding observed response proportions for a quick
evaluation of the model’s ability to account for variability
in the data (Soto et al., 2015). It was found that the model
accounted for 97.43% of the variance in the data from the
experimental group and 95.77% of the variance in the data
from the control group.

Fig. 6 shows the group perceptual distributions
obtained from the best-fitting model, separately for each
group. Each ellipse represents the contour of equal likeli-
hood for the distribution of perceptual effects elicited by
one stimulus. The category-relevant dimension is repre-
sented on the abscissa, whereas the novel dimension is
represented on the ordinate. Note that the scales of each
dimension are not comparable across groups; the compar-
ison of results should focus on what the figure suggests
about dimensional interactions. We will focus first on the
results regarding the category-relevant dimension, which
are the most important given the goals of this experiment.

3.2.1. Separability of the category-relevant dimension
Violations of perceptual separability of the category-

relevant dimension can be evaluated from Fig. 6 by com-
paring horizontal means and variances of the two left dis-
tributions and the two right distributions. The results from
the control group, shown in Fig. 6a, suggest strong viola-
tions of perceptual separability for the category-relevant
dimension. For example, the bottom-left distribution has
a much smaller variance along the category-relevant
dimension than the top-left distribution. Furthermore,
the bottom-right distribution has a much smaller mean
than the top-left distribution. These violations of percep-
tual separability were found to be statistically significant
according to a Wald test (see Appendix for a description),
v2(4) = 38.54, p < 0.001, and they confirm the results from
Experiment 1 and previous studies (Goldstone & Steyvers,
2001) suggesting that dimensions created by face morph-
ing are not separable.

The results from the experimental group, shown in
Fig. 6b, are quite different, with both means and variances
along the relevant dimension being much more similar
across levels of the irrelevant dimension. In other words,
the figure suggests that categorization training in this group
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did indeed increase the separability of the category-rele-
vant dimension. This was confirmed by statistical tests,
which revealed that the deviations from perceptual
separability of the category-relevant dimension were not
statistically significant in the experimental group,
v2(4) = 1.82, p > 0.1. Furthermore, a statistical test
comparing the magnitude of deviations from perceptual
separability between groups (which is derived in
Appendix) showed that the two groups differed signifi-
cantly in the separability of the category-relevant dimen-
sion, v2(4) = 12.13, p < 0.05.

To visualize differences between groups in decisional
separability on the category-relevant dimension, slopes of
the individual decision bounds were transformed to reflect
degrees of clockwise rotation from vertical. These rotation
values should equal zero when decisional separability
holds, with values higher or lower than zero representing
deviations from decisional separability. Both individual
slope values and kernel density estimates computed from
those values are shown in Fig. 7, which displays the results
from both groups in separate panels.

Fig. 7a shows the rotation of bounds for the control
group. It can be seen that violations of decisional separabil-
ity were common, with all bounds having positive rotation
values and a density mode around 30 degrees of rotation.
This was confirmed by a Wald test showing that, on aver-
age, the control group showed statistically significant vio-
lations of decisional separability for the category-relevant
dimension, v2(1) = 5.43, p < 0.05.

Fig. 7b shows the rotation of bounds for the experimen-
tal group. In this case, although some participants seem to
show violations of decisional separability, the group as a

whole has slope values that concentrate around zero and
the density mode is only slightly below zero. Thus, it seems
as if violations of decisional separability were not as strong
and consistent in the experimental group as in the control
group. This was confirmed by a Wald test showing that, on
average, violations of decisional separability for the cat-
egory-relevant dimension were not significant in the
experimental group, v2(1) = 0.1, p > 0.1. A between-groups
statistical test comparing the magnitude of average viola-
tions of decisional separability was only marginally signifi-
cant, v2(1) = 3.79, p = 0.051.

In conclusion, the results from the present experiment
confirm those found previously with the Garner filtering
task, providing evidence that categorization training
increases the perceptual separability of the category-rele-
vant dimension. Furthermore, this experiment also pro-
vided evidence suggestive of an increase in decisional
separability of the category-relevant dimension after cat-
egorization training, although the relevant statistical test
comparing both groups did not reach significance at the
0.05 level.

3.2.2. Separability of the novel dimension
Violations of perceptual separability of the novel

dimension can be visualized in Fig. 6 by comparing the
two bottom distributions and the two top distributions
with respect to their vertical means and variances. For
the control group (Fig. 6a), there seems to be differences
both in means and variances between the two bottom dis-
tributions, whereas the two top distributions seem to have
similar means and variances. A Wald test indicated that

(a) (b)

Fig. 6. Best-fitting configuration of perceptual distributions for control (a) and experimental (b) groups of Experiment 2. Ellipses are contours of equal
likelihood.
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these violations of perceptual separability were sta-
tistically significant, v2(4) = 45.92, p < 0.001.

Similar deviations from perceptual separability are
observed in the experimental group (Fig. 6b). The means
and variances of the two bottom distributions differ impor-
tantly and in the same direction as those in the control
group. For both groups, the mean of the bottom-right dis-
tribution is shifted down compared to the bottom-left

distribution, and the variance of the bottom-right dis-
tribution is larger than the variance of the bottom-left dis-
tribution. There is also a difference in the variances of the
two top distributions that was not observed in the control
group. A Wald test indicated that these violations of per-
ceptual separability were statistically significant,
v2(4) = 12.12, p < 0.05. The difference between groups in
magnitude of deviations from perceptual separability in

(b)

(a)

Fig. 7. Degrees of clockwise rotation from the decisional separability bound for the category-relevant dimension in Experiment 2. Both individual estimates
(tick marks) and kernel density estimates are shown.
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the novel dimension was not statistically significant,
v2(4) = 3.03, p > 0.1.

The importance of these findings is that they indicate
that separability learning is dimension-specific; that is, it
involves changes in separability only for the category-rele-
vant dimension, instead of more general changes that
could affect a completely novel dimension.

The degree of clockwise rotation from horizontal in the
individual decision bounds are plotted in Fig. 8. Many par-
ticipants in the control group (Fig. 8a) seem to show viola-
tions of decisional separability, with all but one bound

having positive rotation values and a density mode
between 20 and 30 degrees of rotation. This was confirmed
by a Wald test showing statistically significant violations
of decisional separability on average in the control group,
v2(1) = 4.57, p < 0.05.

Fig. 8b shows a different pattern of results in the experi-
mental group. Although many participants show important
violations of decisional separability, with absolute degrees
of rotation larger than 20, most participants cluster around
a value of 0 degrees of rotation, as reflected by the density
mode. A Wald test showed that, on average, violations of

(b)

(a)

Fig. 8. Degrees of clockwise rotation from the decisional separability bound for the novel dimension in Experiment 2. Both individual estimates (tick marks)
and kernel density estimates are shown.
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decisional separability observed in Fig. 8b were not signifi-
cant, v2(1) = 0.04, p > 0.1. This suggests that the effect of
categorization training on decisional separability is not
dimension-specific, but also affects decisional strategies
for novel dimensions. However, a between-groups sta-
tistical test comparing the magnitude of average violations
of decisional separability was not significant, v2(1) = 1.54,
p > 0.1, so the effect of category training on decisional sep-
arability is not reliable for the novel dimension.

3.2.3. Tests of perceptual independence
Although perceptual independence is not the focus of

the present work, we will briefly report the results of our
analyses on this form of dimensional interaction. A look
at Fig. 6 reveals that none of the correlations in the control
or experimental groups seem to be very high, suggesting
that violations of perceptual independence were either
nonexistent or very small. In line with this observation,
Wald tests did not reveal significant violations of percep-
tual independence in either the control, v2(4) = 0.29,
p > 0.1, or experimental groups, v2(4) = 1.65, p > 0.1.
Differences between groups were also not statistically sig-
nificant, v2(4) = 0.49, p > 0.1.

3.2.4. Identifiability issues in GRT-wIND
Recent work (Mack et al., 2011; Silbert & Thomas, 2013)

has shown that decisional separability is not identifiable in
traditional GRT models for the 2 ! 2 identification design.
In some cases, perceptual separability might also show
identifiability problems. Given these results, it seems
appropriate to briefly discuss whether GRT-wIND might
have fallen victim to such non-identifiability issues in the
present study.

The most serious issue was identified by Silbert and
Thomas (2013) regarding decisional separability. These
authors showed that any traditional GRT model for the
2 ! 2 identification design without decisional separability
can be transformed into a model with decisional separabil-
ity without affecting the predicted response probabilities.
However, this non-identifiability is an exclusive feature
of the specific task and model studied by Silbert and
Thomas. It can be shown (see appendix of Soto et al.,
2015) that for any GRT model with two or more bounds
per dimension the non-identifiability of decisional sep-
arability happens if and only if all bounds for a given
dimension are parallel. The family of GRT models involving
two or more bounds per dimension includes the traditional
GRT model for a 3 ! 3 identification design (Ashby & Lee,
1991), the GRT model for a concurrent rating task
(Ashby, 1988; Wickens, 1992), and GRT-wIND. If this con-
dition for non-identifiability was met in the present
experiment, then the values of all individual rotation
parameters shown in Figs. 7 and 8 should be the same. It
is easy to see that this is not the case.

A less general problem with the 2 ! 2 design is that
under some conditions a model without perceptual sep-
arability can be transformed into an equivalent model with
perceptual separability (Silbert & Thomas, 2013). Although
all the conditions required to observe this non-identifiabil-
ity have not been worked out, one condition that is abso-
lutely necessary is illustrated in Fig. 9. Perceptual

separability of dimension A from dimension B is evaluated
by comparing the distributions joined by line segments in
the figure. A necessary, but not sufficient condition for
non-identifiability of perceptual separability to arise is that
the two line segments in Fig. 9 must be parallel. Fig. 6a
shows clearly that this condition is not met for perceptual
separability of the relevant dimension in our control group.

Still, the perceptually-separable configuration found in
the experimental group (see right panel of Fig. 6) could
be transformed into a non-perceptually-separable config-
uration. In the traditional individual-level GRT model, the
original and transformed configurations would be equiva-
lent, in the sense that they would predict the exact same
response probabilities. On the other hand, in GRT-wIND
more conditions need to be met for the transformed con-
figuration to be equivalent to the original configuration.
GRT-wIND assumes that participants might differ in the
level of attention that they pay to each dimension in the
task. Selective attention is modeled through an individual
parameter (see Appendix) that essentially stretches and
compresses the perceptual distributions in the direction
of the dimensional axes. Once a transformation is applied
to a GRT-wIND model, this transformation changes the
position of the main axes relative to the perceptual dis-
tributions. This means that it is impossible for the new
model to stretch and compress the distributions in the
same directions as the original model, and therefore both
models cannot be equivalent in terms of their predictions
of response probabilities. Taking this into account, it is easy
to see that perceptual separability can be non-identifiable
in GRT-wIND only when the values of individual selective
attention parameters do not stretch or compress the per-
ceptual distributions at all, which is the case when the
parameter for selective attention equals 0.5 for all partici-
pants. This was not the case in the present experiment. In
the experimental group, the estimated values of the selec-
tive attention parameter ranged between 0.05 and 0.77,

Fig. 9. Example of a GRT configuration in which perceptual separability of
dimension A from dimension B is non-identifiable. A necessary condition
for such non-identifiability to occur is that the line segments that join the
means of distributions in the figure must be parallel.
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with a median of 0.38. In the control group, the estimated
values of the selective attention parameter ranged
between 0.14 and 0.93, with a median of 0.66. In sum,
GRT-wIND shows non-identifiability of perceptual sep-
arability under very specific and restricted conditions,
which were not met by the maximum likelihood estimates
obtained from the model in the present study.

In many signal detection theory models, means and
variances of the perceptual distributions are not uniquely
identifiable. Although this issue has not been systemati-
cally explored either analytically or numerically, our pre-
vious work fitting GRT-wIND to real data showed that
variances seem to capture variability in the data that is
not captured by the means alone, suggesting that these
parameters may all be uniquely identifiable (Soto et al.,
2015). Still, it might be the case that errors in our optimiza-
tion algorithm led to such a result by mere chance.

Although a full study of the identifiability of means and
variances in GRT-wIND is beyond the scope of the present
study, we conducted two new analyses testing this
possibility, which we briefly discuss here.

First, as in our previous study, we fitted a GRT-wIND
model in which all variances were fixed to 1.0 to the data
from both groups in the present experiment. In both cases,
the fit of this restricted model was worse than that of the
full model (i.e., larger AIC; for details, see Soto et al.,
2015). The probability that the fixed-variances model
was the best model in this comparison, computed through
Akaike weights (Wagenmakers & Farrell, 2004) was
5 ! 10%8 in the control group and 5 ! 10%13 in the experi-
mental group. These results are similar to those found in
our previous study, making it less likely that those pre-
vious results were due to the optimization algorithm
favoring one model over the other due to random chance.

Second, we performed several simulations to determine
whether the response probabilities predicted by the model
after a change in a single mean could be reproduced by an
arbitrary change in the corresponding variances. If means
and variances are non-identifiable in GRT-wIND, then when
one mean changes we should always be able to find a change
in variances that leads to an equivalent pattern of behavioral
predictions. The results of our simulations, presented in
Appendix, clearly indicate that this is not the case.

In sum, although a full study of the identifiability of
means and variances in GRT-wIND is beyond the scope of
this article, the available evidence from both model fits
to the observed data and numerical simulations clearly
suggests that these parameters are identifiable.

3.2.5. Is learned separability homogeneous across
participants?

An important assumption of GRT-wIND is that percep-
tual representations for a set of stimuli are similar across
people and differences in performance are the product of
differences in individual attentional and decisional strate-
gies. This seems like a reasonable assumption when deal-
ing with stimulus dimensions whose separability is not
malleable, because a specific level of separability has been
either innately determined or learned by most adults
through considerable experience with the dimensions.
However, this assumption might be violated by

dimensions that are relatively novel. The category-relevant
dimension might or might not be perceived similarly
across participants in the Experimental group, depending
on whether the limited experience with this dimension
fostered similar learning across participants. Differences
in learning rates could have easily led to violations of the
assumptions of GRT-wIND. This issue is less critical when
dimensions are completely novel, as in our Control group,
where all participants are equivalently inexperienced with
the dimensions.

Thus, to apply GRT-wIND in the present experiment,
one must assume that the effect of categorization training
was similar across participants in the Experimental group.
An examination of individual performance during the last
session with the categorization task reveals that this was
not necessarily the case: accuracy for the participants
included in the present experiment ranged between 0.60
and 0.93, meaning that they learned the task to varying
degrees of proficiency.

One way to more directly determine whether the
assumptions of GRT-wIND are appropriate is to analyze
the fit of the model to the data from each participant. As
we have argued before (Soto et al., 2015), if the assumption
of common perceptual representations in GRT-wIND is vio-
lated, then the perceptual distributions estimated from
data should offer a good fit to the data from some partici-
pants, but offer a poor fit to the data from other partici-
pants. This should lead to distributions of fit values that
are not unimodal.

We computed the percentage of the variance in each
participant’s data explained by GRT-wIND as a measure
of individual fit. All participants in the Experimental group
showed high values of model-fit (0.92 and above), with a
median of 0.97. The distribution appeared unimodal,
which was confirmed by a non-significant dip test of uni-
modality (Hartigan & Hartigan, 1985), D = 0.07, p > 0.5.

It could be argued that differences among participants
in perceptual separability of the category-relevant dimen-
sion could have been captured by GRT-wIND as differences
in decisional separability (Silbert & Thomas, 2013). As indi-
cated earlier (Section 3.2.4), this is unlikely to be an issue
in GRT-wIND. Furthermore, if this was the case, then the
decision bounds for the category-relevant dimension
should have varied widely across participants. As seen in
Fig. 7b, this was not the case: decision bounds do vary,
but they are similar and close to vertical (zero degrees of
rotation). In fact, a comparison of Figs. 7b and 8b reveals
that bounds seemed more homogeneous for the cat-
egory-relevant dimension than for a completely novel
dimension. There were no significant deviations from uni-
modality in any of the distributions of bound parameters
(rotation and location of the bounds for each dimension)
in the Experimental group.

In sum, the results show no evidence that the effect of
categorization training was dissimilar across participants
in the Experimental group. If anything, the results seem to
suggest that categorization training actually homogenized
perceptual and decisional processes in the Experimental
group, compared to completely novel dimensions.

The median model-fit value in the Control group was
high (0.96) and comparable to that of the Experimental
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group, with between-group differences in fit being non-sig-
nificant according to a Kruskal–Wallis test. One participant
in the Control group showed extremely poor model-fit
(0.17), but a close examination of the data showed that this
participant had a performance level close to chance, which
was not detected prior to analysis by our exclusion criteria.
Thus, the difference in fit cannot be attributed to a difference
in the way this participant perceived the stimuli. The dip test
revealed no violations of unimodality in the model-fit mea-
sures from the Control group, D = 0.06, p > 0.5.

The parameters from decision bounds (Figs. 7a and 8a)
also seemed more heterogeneous in the Control group than
in the Experimental group. However, as indicated earlier,
there is little reason to expect that people would differ in
their perception of completely novel dimensions. It seems
more likely that the results are due to heterogeneous deci-
sion strategies, just as modeled by GRT-wIND. Importantly,
even if people in the control group did perceive stimuli
heterogeneously, our conclusions for the present experi-
ment would not change. Note that there are many ways
in which perceptual representations can violate perceptual
separability (heterogeneity), but only one way in which
they can be separable. If dimensions are perceptually sep-
arable across participants, GRTw-IND should be able to
capture this pattern, as it does for the category-relevant
dimension in the Experimental group. In the GRT frame-
work, heterogeneity of perceptual distributions across par-
ticipants can only mean that violations of perceptual
separability and perceptual independence are present in
the data of at least some participants.

4. General discussion

The experiments reported here found evidence that
training in a categorization task increases the separability
of the category-relevant dimension according to a variety
of tests from multidimensional signal detection theory. In
Experiment 1, participants who received pre-training in a
categorization task showed reduced Garner interference
effects and reduced violations of marginal response and
RT invariance, compared to participants who did not
receive such pre-training. Both of these tests are theoreti-
cally related to violations of perceptual separability when
decisional separability is assumed to hold (Ashby &
Maddox, 1994; Ashby & Townsend, 1986). In Experiment
2, participants who received pre-training in a categoriza-
tion task showed reduced violations of perceptual sep-
arability according to a model-based analysis of data
using GRT-wIND (Soto et al., 2015), the best currently
available framework for the analysis of dimensional inter-
actions using GRT. The use of an identification task and
GRT-wIND allowed us to dissociate perceptual from deci-
sional dimensional interactions in Experiment 2, leading
to the finding that categorization experience increases
both perceptual and decisional separabilities. We must
note, however, that the effect of categorization on decisio-
nal separability was only marginally significant, and more
research is required to evaluate the reliability of this result.

On the other hand, the data suggest that while the cat-
egorization training we provided seemed to increase

perceptual separability, it did not necessarily produce com-
plete separability. Experiment 1 showed evidence of viola-
tions of perceptual separability in participants that had
received categorization training, according to both the mar-
ginal response invariance and marginal RT invariance
analyses. Such violations could also be observed in
Experiment 2 (Fig. 6), but they were not statistically signifi-
cant. One possibility is that these violations of perceptual
separability might disappear with even more categoriza-
tion training. Another possibility is that the violations are
a consequence of testing separability of the category-rele-
vant dimension when presented together with a com-
pletely novel dimension. It is possible that separability
learning shows some level of dimensional specificity, being
stronger when tested with the originally trained
category-irrelevant dimension. If this is correct, then an
important goal for future research is to determine under
what learning conditions such specificity can be completely
overcome.

As indicated in the introduction, a number of important
problems in perception science can be seen as special cases
of the question of whether or not two or more stimulus
dimensions are perceptually separable. Notably, this
includes any research testing the ‘‘independent’’ or ‘‘holis-
tic’’ nature of perceptual processing and representations
(e.g., Arguin & Saumier, 2000, 2004; Blais, Arguin, &
Marleau, 2009; Fitousi & Wenger, 2013; Ganel & Goshen-
Gottstein, 2004; Mack et al., 2011; Mestry et al., 2012;
Richler et al., 2008; Schweinberger & Soukup, 1998; Soto
& Wasserman, 2011; Soto et al., 2015; Stankiewicz, 2002;
Thomas, 2001). In most research directed to answer such
questions, experimenters have assumed that separability
is a fixed characteristic of stimulus dimensions, in some
cases determined by processing through independent
brain pathways and/or representations (e.g., Andrews &
Ewbank, 2004; Bruce & Young, 1986; Haxby et al., 2000;
Kayaert, Biederman, & Vogels, 2005; Vogels et al., 2001;
Winston, Henson, Fine-Goulden, & Dolan, 2004). If the con-
clusions reached by our study are correct and generaliz-
able, then there would be three important consequences
for such lines of research.

First, researchers should abandon the assumption that
separability is an either/or feature of stimulus dimensions
that must be hardwired in the brain. For example, some
shape properties might have a special status in object
recognition, being processed ‘‘independently’’ (Arguin &
Saumier, 2000, 2004; Kayaert et al., 2005; Stankiewicz,
2002; Vogels et al., 2001), simply because they are diagnos-
tic in object categorization tasks usually encountered in the
environment, instead of being innately determined
(Biederman, 2001). Whether dimensions of face stimuli
are separable (Fitousi & Wenger, 2013; Schweinberger &
Soukup, 1998; Soto et al., 2015) might not be the result of
different brain representations that are hardwired in the
brain (Andrews & Ewbank, 2004; Bruce & Young, 1986;
Haxby et al., 2000; Winston et al., 2004). Instead, both
behavioral and neurobiological markers of separability
might be better conceptualized as the result of learning
through experience in object categorization.

Second, it is important to keep in mind that conclusions
about separability might depend on the methods used for
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testing separability. For example, the Garner filtering task,
which is one of the most widely used tests of separability
or ‘‘independence’’ in perceptual science, is essentially a
categorization task. Given the results reported here, this
means that training in the task by itself might increase per-
ceptual separability of the dimensions being tested. We
currently do not know how training in any other task
might affect perceptual separability. For this reason, it
seems wise that any research aimed at testing notions
related to separability should include controls aimed at
showing that the procedures used are capable to ade-
quately detect violations of perceptual separability.

Third, when interpreting results suggesting separability
or independence of perceptual dimensions, researchers
should take into account the possibility that prior category
learning might have caused that separability. Given the
finding that a particular dimension is processed separately
or independently, the question that a researcher should ask
him/herself is: Is this a dimension that people often use to
divide natural objects into classes?

An important aspect of our study is that we focused on
GRT analyses of dimensional interactions. One advantage
of using GRT is that it dissociates perceptual from decisio-
nal factors in the study of separability and independence.
The results from Experiment 2 suggest that categorization
training changes the separability of perceptual representa-
tions, in addition to any changes it might also induce in
decisional or attentional factors. This is in line with the
results of previous studies suggesting that category learn-
ing may be accompanied by changes in perceptual repre-
sentations rather than only in decisional processes
(Folstein, Palmeri, & Gauthier, 2013; Goldstone, Lippa, &
Shiffrin, 2001; Notman, Sowden, & Özgen, 2005).

On a more technical front, the present work also con-
tributed to the development of new tests within the GRT
framework to study differences between groups in viola-
tions of perceptual separability, perceptual independence
and decisional separability (see Appendix). One reason
why such tests are important is that it has been recognized
for a long time that the separability/integrality of stimulus
dimensions is a matter of degree rather than kind (e.g.,
Shepard, 1991). Our results are in line with this idea: learn-
ing can increase the separability of a dimension, even
though violations of separability can still be found in the
data. Given this, in many cases determining whether there
are differences between two conditions in dimensional
interactions might be more interesting than determining
whether two dimensions do or do not perceptually interact.

How do the present results relate to the hypothesis
(Schyns et al., 1998) that category learning creates new
functional features? Separability learning as studied here
is related to, but not the same as the creation of new func-
tional features. An important aspect of the new features
proposed by Schyns and colleagues is that they increase
the representational capacity of the visual system. This is
not necessarily true of separability learning, which
involves a re-description of objects in terms of dimensions
that might not enrich representational capacity, but might
instead facilitate the use of high-level cognitive mecha-
nisms such as selective attention and rule learning. On
the other hand, one defining characteristic of new

functional features is that they are perceived indepen-
dently from their components (Schyns & Rodet, 1997;
Schyns et al., 1998). That is, a feature is a unit of configural
or holistic perception, which is perceived directly and not
analyzed into components. As indicated earlier, the differ-
ence between holistic or configural processing versus ana-
lytic processing can be cast in terms of integrality/
separability of component features. Thus, at least some
aspects of the problem of new feature learning, as con-
ceived by Schyns and colleagues, are captured by the con-
cept of separability learning.

Importantly, one problem with the controversy over
whether the visual system represents objects through fixed
versus flexible features is that there is no formal definition of
a feature (see Schyns et al., 1998, and comments). In the
object recognition literature, a feature is essentially any
physical stimulus dimension that can be varied by the
experimenter in a task, or any form of information that
can be extracted from an image by a computational model.
We propose that focusing on separable features or dimen-
sions is both more tractable and more theoretically relevant
that focusing on features in general. It is more tractable
because there are clear formal definitions of perceptual sep-
arability, accompanied by operational tests to detect it.
Differences in separability can be measured, which is the
first step of a sound science. Focusing on separable dimen-
sions is more theoretically relevant because, as discussed
in the introduction, there are several ways in which sep-
arable dimensions are ‘‘special’’ compared to dimensions
that do not show separability. Importantly, it seems like a
number of cognitive operations (e.g., selective attention,
rule learning, categorization, generalization, working mem-
ory) depend on whether or not dimensions are separable. It
is such operations and their effect on behavioral choices that
ultimately determine whether a set of dimensions is ‘‘spe-
cial’’ in terms of adaptive behavior.
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Appendix

GRT-wIND

In the 2 ! 2 identification design used in Experiment 2,
stimuli vary along two dimensions A and B, each with two
levels indexed by i = 1, 2, and j = 1, 2, respectively. Suppose
there are N participants indexed by k = 1,2, . . .N. The GRT-
wIND model for this design has four perceptual dis-
tributions, which are assumed to be bivariate normal and
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common to all participants. Each distribution is described
by a mean vector:

lAiBj ¼
lAiBj1

lAiBj2

" #
; ðA1Þ

and a covariance matrix:

RAiBj ¼
r2

AiBj1
qAiBj

rAiBj1rAiBj2

qAiBj
rAiBj1rAiBj2 r2

AiBj2

" #
; ðA2Þ

where r and q represent standard deviations and correla-
tions, respectively. We set lA1B1

¼ ½0;0' and rA1B1 ¼ rA1B2

¼ 1, to fix the position and scale of the final solution.
The model also has several parameters describing pro-

cesses unique to each individual. The parameters jk and
kk represent global and selective attention to dimensions
by participant k, respectively. The covariance matrix for
the distribution of perceptual effects of AiBj in participant
k is equal to:

RAiBjk ¼

r2
AiBj1

jkkk
qAiBj

rAiBj1rAi Bj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

k
kkð1%kkÞ

p

qAiBj

rAi Bj1rAiBj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

k
kkð1%kkÞ

p
r2

Ai Bj2

jkð1%kkÞ

2

6664

3

7775: ðA3Þ

Note that high values of jk decrease the values of all
variances, leading to fewer confusion errors in general. A
value of kk = 0.5 represents equal attention to each dimen-
sion. High values of kk decrease the variances on dimension
A and increase the variances on dimension B, representing
selective attention to A. The opposite is true for low values
of kk.

The other four individual parameters describe the par-
ticipant’s linear decision bounds. Each single bound can
be written as a discriminant function:

hAkðx1; x2Þ ¼ bAk1x1 þ bAk2x2 þ cAk; ðA4Þ

where hAk represents the discriminant function used to
classify component A by the kth participant. A similar
equation can be used to describe hBk, the discriminant
function used to classify component B by the kth partici-
pant. The parameters bAk1 and bBk2 were fixed to a value
of 1.0.

Maximum likelihood estimation of parameters

The data from each participant in an identification
experiment are summarized in a confusion matrix, with
different rows for each stimulus, different columns for
each response, and response frequencies reported in each
cell of the matrix. Let Si and Rj denote stimuli and
responses in the task, respectively, with i and j ranging
from 1 to 4. There are N participants in the experiment,
indexed by k = 1,2, . . .,N. Let rkij denote the frequency with
which participant k responded Rj on trials when stimulus Si

was presented and Pk(Rj|Si) the corresponding response
probability.

Given a set of parameter values, the likelihood of the
data is computed in two steps. First, the predicted confu-
sion matrix of each participant is obtained from the model,
where each Pk(Rj|Si) is computed by integrating the volume

of the Si perceptual distribution in response region Rj (see
Ashby & Soto, 2015). Second, the log of the likelihood func-
tion for each participant is computed and summed across
all participants:

log L ¼
XN

k¼1

X4

i¼1

X4

j¼1

rkij log PkðRjjSiÞ: ðA5Þ

The maximum likelihood estimates are those that maxi-
mize Eq. (A5).

Tests of dimensional interactions

Dimensional interactions can be tested by comparing
maximum-likelihood parameter estimates against
expected values from null hypotheses using a Wald test
(Soto et al., 2015). Let ĥ be a column vector containing
the maximum likelihood parameter estimates. The Wald
test can be used to test any null hypothesis that can be
expressed in the form of linear restrictions on ĥ:

H0 : Rĥ% q ¼ 0

H1 : Rĥ% q – 0;
ðA6Þ

where R is a matrix with number of columns equal to the
number of parameters and number of rows equal to the
number of restrictions being tested, and q is a column vec-
tor with number of rows equal to the number of restric-
tions being tested. For example, if we wanted to test the
hypothesis that ĥ1 ¼ 0, then R would have a single row
(we are testing a single restriction) with a +1 in the first
cell of that row and zeros in all other cells, while q would
have a single cell with a zero in it. If we want to addition-
ally test the hypothesis that ĥ2 % ĥ3 ¼ 10, then we would
add a second row to R with a +1 in the second column
(corresponding to þĥ2) and %1 in the third column
(corresponding to %ĥ3), while q would now have a second
cell with the value 10 in it.

The Wald statistic:

W ¼ Rĥ% q
h iT

RRĥRT
h i%1

½Rĥ% q'; ðA7Þ

where []T represents matrix transpose, has a chi-squared
distribution with degrees of freedom equal to the number
of restrictions being tested (the length of qÞ. The covariance
matrix of the maximum likelihood estimates can be esti-
mated using the inverse of the Hessian of the log-likeli-
hood function at the solution.

The restrictions imposed on the model by perceptual
separability of dimension A from dimension B are the
following:

lA1B21 ¼ 0

rA1B21 ¼ 1
lA2B11 % lA2B21 ¼ 0

rA2B11 % rA2B21 ¼ 0

ðA8Þ

The restrictions imposed in the model by perceptual
separability of dimension B from dimension A are the
following:
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lA2B12 ¼ 0

rA2B12 ¼ 1
lA1B22 % lA2B22 ¼ 0

rA1B22 % rA2B22 ¼ 0

ðA9Þ

The restrictions imposed in the model by perceptual
independence in each of the perceptual distributions are
the following:

qA1B1
¼ 0

qA1B2
¼ 0

qA2B1
¼ 0

qA2B2
¼ 0

ðA10Þ

The Wald test allows tests of decisional separability for
the group average or for each participant individually.
Here, we test decisional separability on average to keep
consistence with between-group comparisons, which can
only be performed on average decisional separability (see
below). The single restriction imposed in the model by
average decisional separability of dimension A from
dimension B can be summarized as:

XN

k¼1

bAk2 ¼ 0 ðA11Þ

The restriction imposed on the model by average deci-
sional separability of dimension B from dimension A is
the following:

XN

k¼1

bBk1 ¼ 0 ðA12Þ

Tests of differences between groups in the magnitude of
dimensional interactions

In many applications of GRT, such as Experiment 2 of the
present study, it is desirable to statistically compare two
sets of parameter estimates, ĥ1 and ĥ2, to evaluate the relia-
bility of observed differences in the magnitude of violations
of separability or independence across experimental condi-
tions. Here we derive a test for the case in which the two
sets of parameter estimates have been obtained from
independent samples.

First note that if ĥi is a maximum likelihood estimate,
then one of its asymptotic properties is that it is approxi-
mately normally distributed:

ĥi )
a Normalðhi;RiÞ ðA13Þ

From our discussion of the Wald test, we know that
many hypotheses about these parameter estimates can
be expressed as linear restrictions on ĥi. The following
vector:

x̂ ¼ Riĥ% q ðA14Þ

measures deviations from each one of the restrictions that
have been encoded in the matrix Ri and the vector q. The
previous section described what restrictions correspond
to the hypotheses of perceptual separability, decisional

separability and perceptual independence. Because a linear
transformation of a normally distributed vector is also nor-
mally distributed, we have that

x̂i)
a Normal Rhi % q;RiRiRT

i

" #
ðA15Þ

We are interested in testing the following hypotheses:

H0 : x1 %x2 ¼ 0
H1 : x1 %x2 – 0

ðA16Þ

To obtain a statistic to test these hypotheses, we note
that because both x̂1 and x̂2 are multivariate normal
(Eq. (A15)), their difference is also multivariate normal
and the statistic:

D ¼ x̂1 % x̂2½ 'T Rx1%x2

$ %%1 x̂1 % x̂2½ ' ðA17Þ

where

Rx1%x2 ¼ R1R1RT
1 þ R2R2RT

2 ðA18Þ

follows a Chi-square distribution under H0, with degrees of
freedom equal to the number of rows in the matrices Ri, so
it can be used as our test statistic. As for the Wald test, we
can obtain estimates of the covariance matrices in Eq.
(A18) by taking the inverse of the Hessian of the log-likeli-
hood function at the solution. Because of the use of an esti-
mate of the covariance matrix, the distribution of the test
only approximates a Chi-square distribution. The inverse
of the Hessian is a consistent estimator of the covariance
matrix, so the quality of this approximation will increase
as sample size increases.

Note that because slope parameters reflect individual
bounds, they are not individually comparable across
groups through D. The only valid between-groups compar-
ison of decisional separability is in terms of group averages
(Eqs. (A11) and (A12)). A test of individual decisional sep-
arability (used in Soto et al., 2015) does not have a
corresponding between-groups test and therefore was
not used here.

Identifiability of means and variances in GRT-wIND

Here we briefly report the results of simulations aimed
at determining whether means and variances are both
uniquely identifiable in GRT-wIND. Each of our simulations
consisted of 150 repetitions of the following procedure.
Starting with the best-fitting model found for the experi-
mental group of Experiment 2, one parameter from the
model was randomly selected and changed by a random
value. The response probabilities from this ‘‘target model’’
were computed. Then, we used an optimization algorithm
to find the value of a set of free parameters in a ‘‘test
model’’ leading to predictions as similar as possible to
those of the target model. The dissimilarity of predictions
was measured through their sum of squared differences
(SSD).

If means and variances are non-identifiable in GRT-
wIND, then it should always be possible to change a mean
using this procedure and find a set of corresponding vari-
ances leading to an SSD of zero. In practice, of course, the
optimization algorithm might not always be able to find
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the set of variances leading to the lowest SSD. To deter-
mine an upper limit of precision for our optimization algo-
rithm, we performed several benchmark simulations in
which the randomly changed parameter in the target
model was a single variance (randomly changed from 0
to 1, 0 to 2, or 0 to 4 in different simulations), and the free
parameters in the test model were the two variances from
the same distribution. The minimal SSD found in these
simulations ranged between 0 and 0.019, with a median
of 2.92 ! 10%6. The maximum value of 0.019 was used as
benchmark in the following analyses.

We then performed a simulation in which the randomly
changed parameter in the target model was a single mean
(randomly changed from 0 to 1), and the free parameters in
the test model were the two variances from the same dis-
tribution. In this case, the SSD ranged between 0 and 2.302,
with a median of 0.054, which was significantly higher
than the maximum SSD found in our benchmark sim-
ulations, according to a Wilcoxon signed rank test
(p < 0.0001). The only SSD equal to zero in this simulation
was due to equivalent predictions in the target and test
models before the optimization was run, which resulted
from a too small random change in the mean parameter
of the target model. In sum, this simulation suggests that
the group means and variances are identifiable in GRT-
wIND. These results are unlikely to be due to the optimiza-
tion algorithm being stuck in local minima because plot-
ting SSD as a function of the values of the variances
revealed a smooth concave function.

To determine whether changes in individual variances
(which are determined by the group variances and individ-
ual attention parameters) could produce the same confu-
sion matrices as changes in a group mean, we repeated
the previous simulations, but this time the free parameters
in the test model were the two variances of the modified
distribution plus all individual attention parameters. The
minimal SSDs from this simulation ranged from
1.36 ! 10%6 to 2.58, with a median of 0.049, which was sig-
nificantly higher than the maximum SSD found in our
benchmark simulations, according to a Wilcoxon signed
rank test (p < 0.0001). In other words, these simulations
suggest that the means and individual variances are
identifiable in GRT-wIND.

Thus, all of our analyses suggest that, unlike standard
signal detection theory, means and variances are uniquely
identifiable in GRT-wIND. We believe this is because a
change in a mean in the model affects response probabili-
ties in a single row of all confusion matrices. Because each
participant has different decision bounds and attention
parameters, which scale variances differently, a change in
a mean has a different impact in different participants,
and to obtain an equivalent model by changing variances,
we would have to change each individual set of variances
in a specific way. This is why a change in the group vari-
ances cannot achieve the same result as a change in the
means. The reason why individual variances and means
are also uniquely identifiable is that individual variances
depend on attention parameters that affect all perceptual
distributions. Changes in individual attention parameters
affect response probabilities in all rows of a single confusion
matrix, so under no circumstances can a change in

attention parameters and global variances lead to the same
predictions as a change in a single mean, which affects
response probabilities in a single row of all confusion matri-
ces. In other words, changes in individual attention
parameters affect not only those cells in the confusion
matrix affected by changes in a mean, but also several
other cells.
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