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Abstract Previous comparative work has suggested that
the mechanisms of object categorization differ impor-
tantly for birds and primates. However, behavioral and
neurobiological differences do not preclude the possi-
bility that at least some of those mechanisms are shared
across these evolutionarily distant groups. The present
study integrates behavioral, neurobiological, and com-
putational evidence concerning the “general processes”
that are involved in object recognition in vertebrates.
We start by reviewing work implicating error-driven
learning in object categorization by birds and primates,
and also consider neurobiological evidence suggesting
that the basal ganglia might implement this process. We
then turn to work with a computational model showing
that principles of visual processing discovered in the
primate brain can account for key behavioral findings in
object recognition by pigeons, including cases in which
pigeons’ behavior differs from that of people. These
results provide a proof of concept that the basic principles of
visual shape processing are similar across distantly related
vertebrate species, thereby offering important insights into the
evolution of visual cognition.
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Many species must visually recognize and categorize objects
to successfully adapt to their environments. Considerable
comparative research has been conducted in object recogni-
tion, especially involving pigeons and people, whose visual
systems have independently evolved from a common ances-
tor, from which their lineages diverged more than 300 million
years ago. The results of behavioral studies have sometimes
disclosed striking similarities between these species, and at
other times have disclosed notable disparities, especially
pointing toward a lower ability of pigeons to recognize
transformed versions of familiar objects (for reviews, see
Kirkpatrick, 2001; Spetch & Friedman, 2006).

Similarly, the results of neurobiological studies have
revealed both similarities and disparities in the structures that
underlie visual object processing. The overall organization of
the two visual systems is quite similar, with the most notable
shared feature being their subdivision into parallel pathways.
All amniotes (mammals, birds, and reptiles) have two main
visual pathways from retina to telencephalon: the thalamofu-
gal and tectofugal pathways (see Fig. 1; Shimizu & Bowers,
1999; Wylie, Gutierrez-Ibanez, Pakan, & Iwaniuk, 2009).
Furthermore, the avian tectofugal pathway and its pallial
targets seem to be separated into at least two parallel
subdivisions, one specialized for processing motion and the
other specialized for processing shape (Fredes, Tapia, Letelier,
Marín, & Mpodozis, 2010; Laverghetta & Shimizu, 2003;
Nguyen et al., 2004; Shimizu & Bowers, 1999; Wang,
Jiang, & Frost, 1993)—similar to the organization of the
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primate thalamofugal system and its cortical targets
(Mishkin, Ungerleider, & Macko, 1983; Ungerleider &
Haxby, 1994).

On the other hand, in birds, the tectofugal pathway is
more developed and plays a dominant role in visual
discrimination tasks, whereas in primates, the thalamofugal
pathway plays the dominant part (Shimizu & Bowers,
1999; Wylie et al., 2009). Thus, the visual pathways that
are responsible for object recognition and categorization are
not homologous in primates and birds. As well, the optic
tectum and other midbrain structures play a central role in
visual processing in birds, but not in mammals.

How should these similarities and disparities be inter-
preted? Is it possible that similar cognitive and perceptual
processes underlie object recognition by birds and primates,
regardless of these behavioral and neuroanatomical dispar-
ities? Given the disparities, can studies in object recognition
by birds provide any insights into human visual cognition?
The present study integrates behavioral, neurobiological,
and computational evidence within an evolutionary frame-
work to offer answers to these three questions. We propose
that differences between birds and primates should not be
taken as evidence of completely specialized visual systems,
that these two taxa likely share common processes of object
recognition, and that birds can and should be used by the
cognitive neuroscience community as an animal model for
the study of some of the processes that are involved in
object recognition by people.

To support these three claims, we begin by presenting an
overview of contemporary thinking in comparative cogni-
tion, proposing that neither behavioral nor neuroanatomical
differences between birds and primates should stop us from
using these different animals to pursue the study of general
processes of object categorization. Then, we review
evidence that error-driven associative learning is involved
in object categorization learning by birds and primates.
Finally, we present new computational evidence that
principles of computation discovered in the primate visual

system can explain many aspects of avian object percep-
tion, including cases in which pigeons’ behavior differs
from people’s behavior, thereby suggesting that processes
other than categorization learning and visual shape process-
ing might underlie these disparities.

A comparative approach to the study of object
categorization

According to a comparative approach, cognition, like any
other biological process, should be studied and understood
within the context of evolutionary theory (Shettleworth,
2010b). Two different perspectives have arisen in comparative
cognition as the consequence of such evolutionary thinking:
one focusing on general processes, and a second focusing on
adaptive specializations (Riley & Langley, 1993).

According to the general-processes approach (Bitterman,
2000; Macphail & Bolhuis, 2001; Wasserman, 1993), some
principles of cognitive processing are both widely distributed
across species and highly useful for the solution of various
environmental tasks. The main evolutionary argument for this
proposal is that even evolutionary diversity implies shared
ancestry and that some selective pressures are spread so
widely across environments that they affect the selection of
characters above the species level (see Papini, 2002).

According to the specialized-adaptations approach
(Gallistel, 1999; Shettleworth, 1993, 2000), many of the
cognitive processes underlying adaptive behavior are
better understood as species-specific mechanisms. The
main evolutionary argument for this proposal is that there
is so much variability in the ways in which information
must be used by different species to adapt to their different
environments that it is impossible for general processing
mechanisms to solve all of these environmental tasks
(Shettleworth, 2000).

Note that, according to these definitions, the issue of
whether a process is relatively general or specialized has to

Fig. 1 Diagram of the two main
visual pathways from the retina
to the extrastriate cortex in
primates (italicized letters) and
from the retina to the entopal-
lium in birds (nonitalicized
letters)
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do with how widespread the process is across species and
with the kind of computational problem that the process
might solve. General processes are relatively widespread
across species; they are likely to solve computational
problems that are shared by the environments to which
such species have adapted. Adaptive specializations are
relatively specific to one or a few species; they are likely to
solve computational problems that are idiosyncratic to the
particular environments to which such species have
adapted. Importantly, the issue of generality and adaptive
specialization, as it is defined here, is different from the
issue of whether the mind is composed of domain-general
or domain-specific mechanisms (e.g., Atkinson & Wheeler,
2004; Cosmides & Tooby, 1994).

Currently, it is accepted that the study of cognition from
an evolutionary standpoint should encompass both general
processes and adaptive specializations (Papini, 2002; Riley
& Langley, 1993; Shettleworth, 2010b). The complex
behavior and cognition that animals exhibit in their natural
environments can be broken down into more basic
processes, with some of them being quite general and
others quite specific. Even if a complex behavior is unique
to a single species, the subprocesses that underlie this
behavior may be more widespread (Shettleworth, 2000).
Thus, the study of complex cognition should be carried out
within an atomistic and “bottom-up” approach (de Waal &
Ferrari, 2010; Shettleworth, 2010b) focused on identifying
and investigating the basic mechanisms that underlie
complex cognition and how they may have evolved.

What this consideration means for interpreting studies of
object recognition in birds is that this form of cognition is
likely to arise from a number of processes, including
mechanisms of visual shape extraction, attention, associa-
tive learning, perceptual learning, and decision making.
Adaptive specializations in any of these systems could be
responsible for behavioral differences between species, but
it is likely that many other processes are shared, especially
if they provide solutions to problems that are general to
many visual environments. As for the neuroanatomical
differences between birds and primates, two points must be
considered. First, many processes other than visual percep-
tion are involved in high-level visual cognition. For
example, object categorization might also involve the
selection of those outputs from the visual system that are
useful for the recognition of a class of objects. In the
following section, we will propose that a common
mechanism, implemented in homologous structures, carries
out this selection process in birds and primates.

Second, even when the structures underlying object
perception are not homologous in people and birds, it is still
possible that they implement similar processes. If what
defines a general process is that it is shared across many
species and that it solves a common environmental

problem, then any nondivergent form of evolutionary
change can lead to the evolution of a general process. In
contrast, adaptive specializations can be produced only by
divergent evolution. Avian and primate visual systems have
evolved from a common ancestor, through exposure to a
similar pressure to solve the computational problems that
are posed by object recognition (see Rust & Stocker, 2010).
Thus, homoplasies may have evolved through either
parallel or convergent evolution, for example (see Papini,
2002). If similar mechanisms have evolved for object
recognition in birds and primates, regardless of whether
they are due to homology or homoplasy, then studying the
neurobiological substrates of behavior in birds offers an
opportunity to increase our understanding of the same
processes in humans. A good example of the successful
application of such an approach is using song learning in
birds as an animal model of human language acquisition
(for a recent review, see Bolhuis, Okanoya, & Scharff,
2010). Although most similarities between song learning
and language acquisition are likely to be the result of
convergent evolution, considerable insight has been gained
about the latter by studying the former.

The neuroscience community has focused almost exclu-
sively on the macaque monkey for studying the neurosci-
ence of visual cognition, since this species has higher face
validity as a good animal model for human vision than do
birds. From the point of view of comparative cognition,
however, birds are just as useful as nonhuman primates for
the study of the general processes of object categorization.
Only in the study of more specialized processes should
nonhuman primates be considered a better animal model
than birds. We next review evidence implicating the
involvement of general processes in object recognition by
primates and birds.

Object categorization and general learning processes

The psychological principles of associative learning have
proven to be quite general (Bitterman, 2000; Macphail &
Bolhuis, 2001; Siegel & Allan, 1996), regardless of the
various tasks and species that have been used for their
investigation. Studying object recognition from a general-
processes view leads naturally to the question of whether
associative-learning processes participate in this form of
cognition.

Researchers generally agree that prediction error plays
an important part in associative learning. We have recently
proposed a model of object categorization that is based on
error-driven associative learning (Soto & Wasserman,
2010a). The idea behind this model is simple: Each image
is represented as a collection of “elements” that vary in
their levels of specificity and invariance with respect to the
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stimuli that they represent. Some elements tend to be
activated by a single image, representing its stimulus-
specific properties; other elements tend to be activated by
several different images depicting objects from the same
category, representing category-specific properties. These
two kinds of elements are associated with responses in any
categorization task depending on each of their abilities to
predict reward via an error-driven learning rule, in which
the change in the strength of the association between a
stimulus element si and an action aj, or Δvij, is determined
by an equation similar to the following:

Δvij ¼ siajdj; ð1Þ

where δj represents the reward prediction error for action aj,
equal to the difference between the actual reward received
and the prediction of reward estimated through the sum of
the associative values of all of the active elements:

dj ¼ r $
X

i

sivij: ð2Þ

A consequence of making learning proportional to
prediction error is that stimulus-specific and category-
specific properties enter into a competition for learning;
only those properties that are predictive of rewarded
responses are selected to control performance.

The common-elements model can explain many key
empirical results in the literature on object categorization by
birds (as reviewed in Soto & Wasserman, 2010a). More
importantly, the model generates precise predictions as to
the conditions that should foster or hinder categorization
learning. For example, the error-driven learning rule
predicts that learning about stimulus-specific properties
can block subsequent category learning. In agreement with
this prediction, when pigeons (Soto & Wasserman, 2010a)
and people (Soto & Wasserman, 2010b) are trained to solve
a discrimination task by memorizing individual objects in
photographs and their assigned responses, both species are

impaired in detecting a change in the training circumstances
in which all of the presented objects are sorted according to
their basic-level categories. This impairment arises because
learning of the identification task promotes good perfor-
mance and low prediction error in the subsequent catego-
rization task.

What we now know about the neurobiology of associa-
tive learning accords with the idea that birds and people
rely on an evolutionarily conserved learning mechanism to
solve object categorization tasks. There is considerable
evidence of error-driven learning in the basal ganglia,
which are homologous structures in birds and mammals
(Reiner, 2002; Reiner, Yamamoto, & Karten, 2005). A
diagram of the main structures in the basal ganglia is shown
on the left of Fig. 2.

The main input site to the basal ganglia is the striatum,
which receives projections from most areas of the primate
neocortex (Bolam, Hanley, Booth, & Bevan, 2000) and
from most areas of the avian pallium (Veenman, Wild, &
Reiner, 1995). Neurons in the striatum send projections to
the output nuclei of the basal ganglia: ventral pallidum, the
internal segment of globus pallidus, and substantia nigra
pars reticula. These output nuclei influence motor control
through descending projections to the motor thalamus.

The basal ganglia might learn, through error-driven
learning, which responses are appropriate given a pattern of
sensory stimulation in visual categorization tasks (see Ashby
& Ennis, 2006; Seger, 2008; Shohamy, Myers, Kalanithi, &
Gluck, 2008). Work by Schultz and colleagues (Montague,
Dayan, & Sejnowski, 1996; Schultz, 1998, 2002; Schultz,
Dayan, & Montague, 1997; Waelti, Dickinson, & Schultz,
2001) has shown that the activity of dopaminergic neurons in
the substantia nigra pars compacta (SNc) and the ventral
tegmental area (VTA) is well described through error-driven
learning algorithms. The striatum is highly enriched in
dopaminergic terminals arising from VTA/SNc (Durstewitz,
Kröner, & Güntürkün, 1999; Nicola, Surmeier, & Malenka,

Fig. 2 Main structures of the
basal ganglia (left) and a diagram
of the cortical and nigral inputs to
striatal neurons (right). A solid
line represents an excitatory/
glutamatergic projection, a
dashed line represents an inhibi-
tory/GABAergic projection, and a
dotted line represents a modula-
tory/dopaminergic projection.
VTA, ventral tegmental area;
SNc, substantia nigra pars com-
pacta; GPe, external globus pal-
lidus; VP, ventral pallidum; GPi,
internal globus pallidus; SNr,
substantia nigra pars reticula
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2000), and it has been shown that the plasticity of cortical–
striatal synapses depends on the presence of dopamine in the
synapse (Centonze, Picconi, Gubellini, Bernardi, & Calabresi,
2001; Reynolds & Wickens, 2002). These observations
suggest that cortical–striatal synapses may mediate error-
driven learning of stimulus–response associations (Schultz,
1998, 2002), such as those proposed by the three-term
learning algorithm in our model (see Eq. 1). Object
classification learning in the striatum would require activity
of the presynaptic visual neurons (si), activity of the
postsynaptic striatal neurons (aj), and the presence of a
dopaminergic signal coming from VTA/SNc (δ—see the
subpanel in Fig. 2).

Most of the reviewed research has been done with
mammals. But the avian basal ganglia may also play a role
in visual discrimination learning (Izawa, Zachar, Aoki,
Koga, & Matsushima, 2002) and in the prediction of reward
from visual cues (Izawa, Aoki, & Matsushima, 2005;
Yanagihara, Izawa, Koga, & Matsushima, 2001).

Although some researchers (Freedman, Riesenhuber,
Poggio, & Miller, 2003; Jiang et al., 2007; Serre, Oliva,
& Poggio, 2007) have suggested that the critical site for
category learning in primates might be the prefrontal
cortex (PFC), recent evidence has suggested that lateral
PFC, the PFC area that has been more strongly related
to categorization learning, is not necessary for learning
and generalization in some object categorization tasks
(Minamimoto, Saunders, & Richmond, 2010). The basal
ganglia might be a more important site for categorization
learning in primates than PFC, especially for learning
processes that are shared with other species. An interesting
possibility is that learning of abstract category representa-
tions in PFC is trained by the output of the basal ganglia
(Antzoulatos & Miller, 2011).

In summary, evidence indicates that general principles of
associative learning can explain object categorization
learning in birds and people. We suggest that the basal
ganglia may be a candidate site to implement such general
processes. We now turn to the question of whether there
might in addition be general visual processes involved in
object categorization.

General visual processes? Hierarchical shape processing
in the primate and avian brains

The ventral stream of the primate visual cortex is
specialized for shape processing and object recognition
(Mishkin et al., 1983; Ungerleider & Haxby, 1994). The
ventral stream comprises several sequentially organized
areas, starting at the primary visual cortex (V1), going to
extrastriate areas V2 and V4, and then to the inferior
temporal lobe (IT).

Several observations have indicated that the ventral
pathway is hierarchically organized (Felleman & Van
Essen, 1991; Grill-Spector & Malach, 2004). Areas along
the pathway implement visual processing over information
of increasing complexity, with each level integrating
information from the previous one, discarding irrelevant
information, and generating a more complex and abstract
representation that is passed to the next level for further
processing.

Hubel and Wiesel (1962, 1968) first proposed a hierar-
chical functional architecture to explain the neural response
properties of cells in primary visual cortex. This model has
received substantial empirical support over the years (Ferster
& Miller, 2000; Martinez & Alonso, 2003; Reid & Usrey,
2004). Furthermore, it has been extended to explain the
response properties of cells across the whole ventral
pathway, including V2 (Anzai, Peng, & Van Essen, 2007;
Boynton & Hegde, 2004), V4 (Cadieu et al., 2007), and IT
neurons (Riesenhuber & Poggio, 1999). Consequently, a
family of primate object recognition models has arisen (e.g.,
Fukushima, 1980; Perrett & Oram, 1993; Riesenhuber &
Poggio, 1999, 2000; Rolls & Milward, 2000; Serre, 2006;
Serre et al., 2005; Serre, Oliva, & Poggio, 2007; Wersing &
Körner, 2003), each proposing that processing in the ventral
stream is hierarchical and feedforward, involving an increase
in the complexity of features to which neurons are selective
and in the invariance of their responses to several variables
from early to late stages of processing.

Although birds and primates use nonhomologous
structures for visual pattern discriminations, there is
direct evidence of hierarchical feedforward visual pro-
cessing in the avian tectofugal pathway. The receptive
fields of many neurons in the tectum have a center–
surround structure similar to that shown by LGN
neurons (Frost, Scilley, & Wong, 1981; Gu, Wang, &
Wang, 2000; Jassik-Gerschenfeld & Guichard, 1972). Li,
Xiao, and Wang (2007) found that the receptive fields of
neurons in the nucleus isthmus, a structure that has reciprocal
connections with the tectum, are constructed by feedforward
convergence of tectal receptive fields, as proposed by the
hierarchical model of Hubel andWiesel (1962, 1968). Also in
accord with hierarchical processing, there is a large increase
in receptive field size from the optic tectum to the
entopallium (Engelage & Bischof, 1996).

Thus, the main mechanism that is thought to be
implicated in visual shape processing in the primate brain
also seems to be at work in the avian tectofugal pathway.
However, as noted earlier, comparative studies have found
important behavioral disparities between people and
pigeons in object recognition tasks. Here, we argue that
these disparities arise from specialization of processes other
than categorization learning and visual shape processing.
Our argument is that it is plausible and in accord with the
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available behavioral and neurophysiological data that the
avian tectofugal pathway, like the primate ventral stream,
implements hierarchical and feedforward processing of
shape information.

To support this claim, we present the results of several
simulations with a “general-processes” model of object
categorization in pigeons, which implements both the
principles of visual processing discovered in studies of the
primate ventral stream and the principles of error-driven
categorization learning described earlier. The results of
these simulations provide a proof of concept for the
hypothesis that the basic principles of visual shape
processing are alike in primates and birds, despite the
known behavioral disparities.

Explaining avian object perception through principles
of visual computation in the primate brain

Model

Visual shape processing in the tectofugal pathway Here, we
use a hierarchical model of object recognition in primate
cortex recently proposed by Serre and colleagues (Serre,
2006; Serre et al., 2005; Serre et al., 2007), which extends
previous work by Riesenhuber and Poggio (1999, 2000).
This model has several advantages for our purposes.

First, it was developed with the goal of more faithfully
reflecting the anatomy and physiology of primate visual
cortex than had previous models. Second, the two main
operations deployed by the model (see below) can be
implemented by biologically plausible neural microcircuits
(Carandini & Heeger, 1994; Kouh & Poggio, 2008; Yu,
Giese, & Poggio, 2002); evidence suggests that these
operations are used in the visual cortex (Gawne & Martin,
2002; Lampl, Ferster, Poggio, & Riesenhuber, 2004). Third,
the model includes a dictionary of about 2.3×107 shape
feature detectors, whose selectivities have been learned
through exposure to natural images (see Serre, 2006).
Finally, this model can explain empirical results at several
levels of analysis, including behavioral data (Serre et al.,
2007). This explanatory success is important, because the
present work will focus on behavioral studies of avian
object recognition.

Despite these advantages, we caution that this is neither a
definitive model of the primate ventral pathway nor a realistic
model of the avian tectofugal pathway. Some details about the
mechanisms that are propose in the model are debatable and
may be incorrect (see Kayaert, Biederman, Op de
Beeck, & Vogels, 2005; Kriegeskorte, 2009; Yamane,
Tsunoda, Matsumoto, Phillips, & Tanifuji, 2006). However,
we do believe that the model grasps some of the
processes that are implemented by the primate ventral

pathway. Specifically, the model implements feedfor-
ward, hierarchical processing of visual shape informa-
tion—the process that we wish to test here. If
feedforward and hierarchical processing is important
for extracting shape information by the avian tectofugal
pathway, the model should be able to explain basic
behavioral findings in avian object perception.

We will only sketch the model here. More detailed
descriptions can be found in the original articles by Serre and
colleagues (Serre, 2006; Serre et al., 2005; Serre et al., 2007)
and in the supplementary materials. The model (Fig. 3) is
organized into eight layers of two types: layers with “simple”
units (S) and layers with “complex” units (C). The units in
each layer perform different computations over their inputs.

Simple units perform a feature selection operation,
responding to higher-level features that result from a
combination of inputs from units in the prior layer tuned to
various lower-level features. Each simple unit receives inputs
from nSk units in the prior layer, and it has a preferred pattern
of stimulation that is represented by the vector of weights w.
Given a vector x representing the actual input received by
the unit, its response y is a Gaussian-like tuning operation:

y ¼ exp $ 1
2s2

Xnsk

j¼1

wj $ xj
! "2

 !

ð3Þ

Fig. 3 Global structure of the hierarchical model used in the
simulations presented here. Layers of “simple” units are denoted by
the letter S, whereas layers of “complex” units are denoted by the
letter C. Numbers and noncapital letters index the positions of
different layers in the hierarchy
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where σ represents the sharpness of the tuning function.
Thus, the response of a given unit is a function of the
mismatch between the input to the unit and its preferred
feature. The weights for units in the first layer of simple units
(S1) take the form of a Gabor function, which has been
shown to be a good model for the response properties of V1
simple neurons (Daugman, 1985; Jones & Palmer, 1987). A
battery of such Gabor functions is used to directly filter the
image that is presented to the model. The values of weights
wj for units in subsequent simple units were learned from
exposure to patches of natural images (see Serre, 2006, and
the supplementary materials).

Complex units carry out a pooling operation, combining
inputs from nCk units in the prior layer tuned to the same
feature over a range of positions and scales. The response y
of the complex unit is equal to the maximum value among
its inputs:

y ¼max xj
j¼1:::nCk :

ð4Þ

For each simulation, 1,000 units were sampled randomly
from each of the four C layers, and their responses were used
as input to the classification learning system. Note that,
although the pool of feature detectors had a size of 4,000 units,
only a very small proportion of these detectors were strongly
activated by any image (i.e., a sparse representation), because
detectors that were tuned to simple and common features (e.g.,
C1) had high spatial and scale specificity, whereas detectors
exhibiting spatial and scale invariance (e.g., C3) were
sensitive to complex feature configurations that were present
in only a limited number of objects.

Classification learning in the basal ganglia For classification
learning, complex units across the hierarchy project directly to
a reinforcement learning stage, which is assumed to be
implemented in the basal ganglia. This assumption accords
with evidence indicating the existence of projections to the
striatum from all areas in the pallium (Veenman et al., 1995).

The classification learning system that was used here is a
rendition of our previous model (Soto & Wasserman,
2010a) in terms of a reinforcement learning architecture.
Several of the functions that are ascribed to the basal
ganglia, together with the role of prediction error in each of
these functions, can be captured through reinforcement
learning models (Chakravarthy, Joseph, & Bapi, 2010).

Here, we model animal behavior on a trial-by-trial basis.
Each trial consists of presentation of a visual stimulus,
selection of an action, and updating of weights depending on
the reward received. At the beginning of a trial, the stimulus is
processed by the visual system, which gives as its output a
distributed representation in terms of shape features (the
responses of selected complex units, as described earlier). The

response of the ith feature detector to the stimulus is
represented as xi. The weight of the association between xi
and action j is represented as vij. These values are multiplied
by the response of each feature detector to determine the
input to the response selection system. As in our prior model
(Soto & Wasserman, 2010a), these inputs sum their influence
to determine the value of performing action j given the
presentation of stimulus s, or Qsj:

Qsj ¼
X

i

xivij: ð5Þ

Thus, action values can be computed by the activity
of striatal neurons that additively combine the inputs
from multiple pallial neurons. Then, these values can be
used for action selection in the basal ganglia. In our
model, once the value of each action is computed, it is
transformed to a response probability through a softmax
choice rule:

pj ¼
ebQsj

P
j
ebQsj

; ð6Þ

where the parameter β (set to 3.0 in all of our simulations,
as in our prior modeling work) represents the decisiveness
of the choice rule, with higher values leading to stronger
preferences for the choice with the larger incentive value.
The probabilities that are obtained from Eq. 6 are used to
probabilistically sample an action on a particular trial, in
what is known as Boltzmann exploration (Kaelbling,
Littman, & Moore, 1996).

Once an action is selected, the animal can either receive
a reward (r=1) if the choice is correct or no reward (r=0) if
the choice is incorrect. This information is used to compute
an action-specific prediction error, which is the discrepancy
between the value that is computed for the selected action
and the actual reward received:

dj ¼ r $
X

i

xivij: ð7Þ

It has recently been found that this type of error is indeed
signaled by dopaminergic midbrain neurons (Morris, Nevet,
Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, &
Schoenbaum, 2007). Given that dopaminergic neurons send
projections to striatal neurons, the error signal that they
carry could be used for error-driven learning at the pallial–
striatal synapses to which they project. This process is
captured in our model by updating Q values according to an
error-driven learning rule:

vnewij ¼ voldij þ axidj; ð8Þ

where α is a learning rate parameter that was set to 0.001 in
all our simulations. This learning rate was chosen because it
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allowed for fast learning of the tasks, with relatively stable
trial-by-trial performance at the end of training.

We did not attempt to fit the free parameters of the
model to the data or to perform a systematic search of
the parameter space to find those values that would
yield the most accurate predictions. Rather, we ran all
of the simulations with the model parameters fixed to
specific values, with the aim of documenting the
model’s ability to qualitatively reproduce the behavioral
patterns that were observed in the experimental data,
even with the constraint of using the same parameters in
every simulation.

For each simulation, we present the average of 10 model
runs. In general, the results varied little across runs of the
model (standard errors for all of the simulations can be
found in Supplementary Table 1).

Ideal-observer model An important problem in vision
research is determining whether the effect of a particular
stimulus manipulation on performance could be due to
stimulus and task factors instead of to any processing
carried out by a visual system. In our case, if the behavior
shown by pigeons in a particular task could be explained as
arising from the similarities among the stimuli or the
structure of the experimental task, our finding that the
general-processes model could explain such a behavioral
pattern would be uninformative as to its appropriateness as
a model of the avian visual system. To provide a
benchmark against which to test the performance of the
general-processes model, we also simulated each experi-
ment using an ideal-observer model (Tjan, Braje, Legge, &
Kersten, 1995). The behavior of this ideal observer
represents the optimal performance in each experimental
task for an agent relying on the pixel-by-pixel similarities
among the images to solve it. The ideal-observer model
allowed us to determine which aspects of an experimental
outcome could be explained as resulting directly from task
and stimulus demands and not from any visual processing
carried out by the pigeons. A more detailed description of
this model can be found in the supplementary materials.

Simulations

Here, we present the results of five simulations with our
general-processes model. Each simulated experiment repre-
sents a sample from a different line of research that has
received considerable attention in the pigeon literature:
view invariance, image properties that control object
recognition, the role of spatial information in object
recognition, invariance across changes in surface features,
and size invariance. These examples have been chosen
either because pigeons behave differently from humans in

that experiment or because of the perceived importance of
the experiment to characterize object recognition in birds.

Generalization to stimuli rotated in depth Several experi-
ments have tested whether pigeons can recognize objects
that are seen at a single viewpoint when they are later
rotated in depth. The results of these experiments have
uniformly found that pigeons do not show one-shot viewpoint
invariance (Cerella, 1977; Lumsden, 1977; Peissig, Young,
Wasserman, & Biederman, 2000; Spetch, Friedman, & Reid,
2001; Wasserman et al., 1996). Yet pigeons do show above-
chance generalization of performance to novel views of the
training object after training with just one view, and they
exhibit generalization behavior that is closer to true
viewpoint invariance as the number of training views is
increased (Peissig, Wasserman, Young, & Biederman, 2002;
Peissig et al., 2000; Wasserman et al., 1996).

As is discussed by Kirkpatrick (2001), these results argue
against structural description theories (e.g., Biederman,
1987; Hummel & Stankiewicz, 1998) as a full account of
pigeons’ recognition of objects across viewpoints. Specifi-
cally, structural description theories assume that the identity
of some simple volumes, called geons, should be recoverable
by the visual system from almost any viewpoint. Contrary to
this assumption, several studies in which pigeons have been
trained to discriminate geons have found strongly viewpoint-
dependent behavior (Peissig et al., 2002; Peissig et al., 2000;
Spetch et al., 2001). These results accord better with image-
based theories (e.g., Poggio & Edelman, 1990; Tarr &
Pinker, 1989; Ullman, 1989), which predict both a drop in
accuracy to novel views of the training object and a
reduction of this generalization decrement as the number of
training views is increased.

In a study conducted by Spetch et al. (2001), pigeons
were trained to discriminate two objects in four conditions.
In the zero-part condition, both objects were composed of
five elongated cylinders that were joined in their extremes
at different angles (i.e., “paperclip” objects). All of the
other conditions involved the replacement of one, three, or
all five cylinders in each object by distinctive geons (see
Fig. 4a); these were the one-, three-, and five-part
conditions, respectively. The birds were trained with two
views (0° and 90° of rotation) of each object, and they were
tested with six different views (0°, 30°, 90°, 135°, 160°,
and 225° of rotation). As discussed by Tarr, Bülthoff,
Zabinski, and Blanz (1997), image-based theories predict
viewpoint-invariant recognition when a diagnostic feature
is available, as in the one-part condition, but not when a
diagnostic feature is absent, as in all of the other conditions.
Importantly, this is exactly the result that was found with
people. Structural description theories predict viewpoint-
invariant recognition whenever an object can be easily
decomposed into simple volumes that are arranged in a
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particular way, as in all of the conditions except the zero-
part condition.

The experimental results are shown in the top panel of
Fig. 4b. It can be seen that pigeons’ accuracy with novel
views of the objects (30°, 135°, 160°, and 225° of rotation)
progressively decreased as a function of distance from the
training views in all four conditions. This result cannot be
explained by either structural description models or image-
based models, and it is different from what was found with

human participants, who experienced the same experimental
procedures. Is it possible that a model based on mechanisms
known to function in primates could explain the pigeons’
results, despite their being different from humans’ results?

The answer is “yes,” as indicated by the results of a
simulation with the general-processes model that is shown
in the middle panel of Fig. 4b. Just as was observed for the
birds, the model yielded essentially the same pattern of
results in all of the conditions: high levels of performance at

Fig. 4 (a) Examples of the stimuli used by Spetch et al. (2001) to test
the effect of adding distinctive parts to an object on the object’s
recognition from novel viewpoints. (b) Pigeon data (top) and results
simulated with the general-processes model (middle) and an ideal-

observer model (bottom) for the experiment carried out by Spetch et
al., testing the effect of adding distinctive parts to an object on its
recognition from novel viewpoints
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the training views, and a decrement in accuracy as a
function of distance from the training views. The model did
not yield generalization levels quite as high as those
observed for the pigeons. Also, the model did not reproduce
the order of performances across conditions within each of
the test orientations. For example, performance in the five-
part condition was higher than in the other conditions at 30°
and 225° of rotation. The authors did not report statistical
tests for these effects, so it is unknown whether any of them
are reliable. The most important effect reported in Spetch et
al. (2001)—a decrement in performance as a function of
rotational distance, regardless of condition—is reproduced
by the general-processes model. Thus, a model that is based
on mechanisms that are known to function in primates
behaved more similarly to pigeons than to people in this
experiment.

The results of a simulation with the ideal observer,
shown in the bottom panel of Fig. 4b, suggest that most
aspects of the experimental results can arise from the
pattern of low-level similarities in the stimuli. Other aspects
of the experimental results, however, argue against this
explanation. For example, the ideal observer cannot explain
why pigeons showed above-chance performance with the
30° and 135° testing views in the zero-part condition. Thus,
good performance with these testing views cannot be due to
physical similarity between the training and testing stimuli.

More recent results have also argued against an
explanation of object recognition in birds in terms of an
image-based model involving either mental rotation (Tarr &
Pinker, 1989) or interpolation between viewpoints in
memory (Bülthoff & Edelman, 1992). Peissig et al. (2002)
trained pigeons to discriminate grayscale images of four
geons. They found that training with multiple views of an

object along one axis of rotation enhanced generalization to
novel views of the object along both the training axis and
an orthogonal axis. The results from their most important
test, involving novel views of the objects rotated along an
orthogonal axis, are plotted in the left panel of Fig. 5. The
radial coordinate in the polar plot represents the proportion
of correct responses, whereas the angular coordinate
represents the degree of rotation from the training image
(assigned to 0º of rotation). The chance level for this test
was .25 for correct responses, which is indicated by the
small circular lines in the radial charts displayed in Fig. 5. It
can be seen that training with multiple views of the objects
enhanced recognition at all of the novel viewpoints. The
pigeons could not have used direct interpolation between
the training views to aid performance with novel views
along the orthogonal axis. Also, the amount of mental
rotation that was required to recognize novel views along
the orthogonal axis from the nearest training view was the
same for pigeons that were given either one view or five
views of the objects along the training axis. Thus, this
pattern of results cannot be captured by several traditional
cognitive models of object recognition. Although data from
adult humans are not available for this experimental design,
human infants have exhibited the same pattern of results
shown by the pigeons in this study (Mash et al., 2007).

The results of a simulation with the general-processes
model are depicted in the middle panel of Fig. 5. Although
the model again does not achieve the high levels of
generalization that were shown by the pigeons, it does
successfully reproduce the consistent increase in general-
ization performance after training with multiple views. This
increase occurs because it is likely that those properties of
objects that are invariant across training views are also

Fig. 5 Pigeon data (left) and results simulated with the general-
processes model (middle) and an ideal-observer model (right) for the
experiment performed by Peissig et al. (2002), testing the effect of
training with views of an object rotated in depth along one axis on its
recognition when rotated along an orthogonal axis. The radial

coordinate in each polar plot represents the proportion of correct
responses, whereas the angular coordinates represent the degrees of
rotation from the training image, the latter corresponding to 0° of
rotation. The chance level for this test was .25 for correct responses
and is indicated by the small circular line in each of the radial charts
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present in many other novel testing views, regardless of the
axis chosen to rotate the object and produce the testing
views. Increasing the number of training views increases
the likelihood of common properties between the testing
and training objects; it also increases behavioral control by
those properties that are common to several training
images, because these properties are presented and associ-
ated with the correct responses more often than those
properties that are idiosyncratic to each image.

The results of a simulation with the ideal observer, shown
in the right panel of Fig. 5, suggest that low-level stimulus
similarity may have boosted generalization performance in
the multiple-views group to some of the novel views, but not
to all of them. Specifically, performance levels were actually
lower in the five-views condition than in the one-view
condition at 72°, 108°, 144°, and –108° of rotation.

In summary, although the general-processes model does
not promote the same high levels of generalization to novel
object views that were exhibited by the birds, it does
reproduce the qualitative patterns of results that were
observed in studies of rotational invariance.

Bias to rely on nonaccidental properties of images for
object recognition Structural description theories of object
recognition (e.g., Biederman, 1987; Hummel & Stankiewicz,
1998) propose that humans extract the three-dimensional
structure of objects from nonaccidental edge properties in
retinal images, such as parallelism and cotermination.
Indeed, empirical results indicate that nonaccidental proper-
ties are particularly important features for object recognition
by primates and birds (Biederman & Bar, 1999; Gibson,
Lazareva, Gosselin, Schyns, & Wasserman, 2007; Kayaert,
Biederman, & Vogels, 2003; Lazareva, Wasserman, &
Biederman, 2008; Vogels, Biederman, Bar, & Lorincz,
2001).

Gibson et al. (2007) trained pigeons and people to
discriminate four geons that were shown at a single
viewpoint. Once high performance levels were reached,
the researchers used the Bubbles procedure (Gosselin &
Schyns, 2001) to determine which properties of the images
were used for recognition. With this procedure, the
information in images is partially revealed to an observer
through a number of randomly located Gaussian apertures,
or “bubbles,” and the observer’s response is used to
determine which areas in an image are used to correctly
recognize an object. Gibson et al. defined regions of interest
in their images containing information about edges,
shading, and edge cotermination. Figure 6a shows some
examples of these different types of regions in one of the
geons. This manipulation made it possible to determine the
extent to which the information used by the subjects, as
revealed through the Bubbles procedure, was contained in
each region of interest. The left section of Fig. 6b shows the

reanalyzed pigeon data from the Gibson et al. experiment.
Pigeons relied on cotermination information more strongly
than on other edge properties, and on those two edge
properties much more strongly than on shading. The human
data (not included in Fig. 6b) showed the same qualitative
pattern of results.

As is illustrated in the center section of Fig. 6b, the
general-processes model correctly reproduces the bias that
was observed in pigeons and people to rely on cotermina-
tion information for the discrimination of simple volumes.
The results from the ideal observer, shown in the right
section of Fig. 6b, confirmed the conclusion reached in the
original study that cotermination information was not the most
informative nonaccidental property in this particular task.
According to the ideal observer, in this task, the most
diagnostic property for recognition was the objects’ edges.
These results are particularly important, as they suggest that
the bias that was shown by pigeons and people to rely on

Fig. 6 (a) Examples of regions of a geon that were classified as
containing edges, edge coterminations, and shading information in the
Gibson et al. (2007) study. (b) Relative uses of cotermination, edge,
and shading regions by pigeons (left), the general-processes model
(middle), and an ideal-observer model (right) when trained with the
procedures and stimuli from the Gibson et al. study
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nonaccidental properties does not require the explicit repre-
sentation of three-dimensional volumes by the visual system,
as proposed by structural description theories, but emerge
from quite simple principles of biological visual computing.

The general-processes model combines the inputs from
units that are sensitive to oriented edges, which are located
early in the hierarchy of feature detectors, to produce the
receptive fields of units in later stages. Because the
preferred stimuli for units in later stages have been learned
through experience with natural images, it is likely that they
include both coterminations and elongated edges, which are
frequently found in natural objects.

It is less clear why cotermination information was
preferred over other edge properties to solve the task,
especially because, in natural images, elongated edges are
the more common of those two properties (Geisler, Perry,
Super, & Gallogly, 2001). One possibility is that tolerance
to image translation and scaling in the model renders the
elongated contours of an object less reliable for identifica-
tion, but the same process does not affect object cotermi-
nations to the same extent. Whereas two parallel edges can
be perfectly aligned after translation, two corners are less
likely to have the same local configuration after translation.
In other words, two close, approximately parallel edges are

very likely to be confused as the same feature by an
invariant edge detector. Two coterminations belonging to
the same object, however, are more likely to have a
different configuration (e.g., a corner pointing to the left
vs. a corner pointing to the right), which would resolve the
ambiguity added by invariant feature detection. Thus,
translation-invariant detectors are more likely to confuse
two edges than two coterminations if they are shown
through slightly translated “bubbles.”

Recognition of complementary and scrambled object
contours The results of several experiments led Cerella
(1986) to conclude that pigeons recognize objects using
local features, while ignoring their spatial relations and
other global properties. This proposal stimulated several
studies showing that pigeons do in fact represent spatial
relations among features (Kirkpatrick-Steger & Wasserman,
1996; Kirkpatrick-Steger, Wasserman, & Biederman, 1998;
Van Hamme, Wasserman, & Biederman, 1992; Wasserman,
Kirkpatrick-Steger, Van Hamme, & Biederman, 1993).

In one of these experiments (Van Hamme et al., 1992),
pigeons were trained to recognize line drawings of four
objects, such as those in the left and center of Fig. 7a. The
stimuli were created by deleting half of an object’s contour,

Fig. 7 (a) Some of the stimuli used by Van Hamme et al. (1992) to
study the transfer of performance across complementary contours of
an image (left, middle), and the scrambled version of the contours
(right). (b) Pigeon data (left) and results simulated with the general-
processes model (middle) and an ideal-observer model (right) for Van
Hamme et al.’s Experiment 2, in which they evaluated transfer of

recognition performance across complementary contours of the
training images and their scrambled versions. (c) Pigeon data (left)
and results simulated with the general-processes model (middle) and
an ideal-observer model (right) for Van Hamme et al.’s Experiment 3,
testing the effect of different degrees of spatial scrambling on the
recognition of object line drawings
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which allowed the investigators to train the pigeons to
recognize one partial object contour and to test with the
complementary contour. If the pigeons represented these
objects using only the local lines and vertices that were
available in the training images, then they should fail to
accurately recognize the complementary contours, and their
performance should be close to the chance level of .25
correct choices. However, as shown in Fig. 7b, pigeons
recognized these complementary contours at a high level of
accuracy, suggesting that their visual system could infer
object structure from the partial contours that were seen
during training. To control for the possibility that this result
was due to similarity between local features in the original
and complementary contours, the pigeons were also tested
with stimuli in which the complementary contours were
spatially scrambled, as in the image shown in the right part
of Fig. 7a. Pigeons’ performance dropped precipitously to
the scrambled stimuli (see Fig. 7b), although it was still a
bit above chance, suggesting that both local features and
spatial structure are important in pigeons’ recognition of
object contours.

A follow-up experiment, in which pigeons were tested with
scrambled versions of the original training stimuli, strength-
ened this conclusion and further suggested that the intact
spatial organization of an object contour might be more
important for recognition than local features. As is shown in
Fig. 7c, accuracy with scrambled versions of the original
stimuli—which retained all of the local features and
disrupted the drawings’ spatial organization—was lower
than with their complementary contours (see Fig. 7b), which
retained all of the spatial organization and disrupted the
drawings’ local features. The test results also indicated that
the effect of scrambling image features depended on whether
the spatial translation of features was mild or heavy. Mild
scrambling involved translating the original features within
their original quadrants, whereas heavy scrambling involved
translating half of the features to the adjacent (clockwise)
quadrant. Heavier spatial translation of features led to larger
drops in performance.

These and other experiments in which pigeons were tested
with scrambled versions of object contours have led to the
rejection of an explanation of avian object recognition via a
“bag-of-features” representation, as proposed by Cerella
(1986). Although the general-processes model used here
also uses a bag-of-features representation, it retains informa-
tion about the spatial structure of objects by using a large
bank of overlapping features. The question is, however,
whether using a bank of overlapping features is enough to
support the generalization of performance across comple-
mentary contours, which do not share any local features.

As shown in Fig. 7b and c, the answer is “yes.” The
general-processes model can reproduce all of the key
aspects of the results reported by Van Hamme et al.

(1992). In contrast, the ideal-observer model yielded
performance that was at or near chance to all of the testing
stimuli in both experiments. The high levels of generaliza-
tion to complementary contours that were shown by the
general-processes model could be due to two mechanisms.
First, units at the end of the processing hierarchy are both
selective to complex shapes and relatively invariant to
spatial translation and scaling. Some line contours in the
two complementary images were quite similar, but they
appeared in slightly different positions in the image. In the
example shown in Fig. 7a, the complementary contours in
the chest and belly of the penguin are quite similar and are
located in only slightly different spatial positions. Line
contours such as these could have activated the same
feature detectors in the two complementary images.
Second, two contours in the complementary images could
have moderately activated the same unit if they both
overlapped with different sections of its preferred stimulus.
In the example shown in Fig. 7a, a unit that is selective for
a long vertical curve could have been activated by the two
halves of the penguin’s back that were present in the two
complementary images.

The effects of scrambling are reproduced because of the
large number of overlapping feature detectors that were
included in the general-processes model, which retain
considerable information about the spatial organization of
each object. Importantly, this model can also reproduce the
above-chance performance that was observed with the
scrambled stimuli, which results from the fact that some
diagnostic visual features are not affected by scrambling.

The results of these simulations suggest a way to
reconcile the contradictory results found by Cerella
(1980), on the one hand, and by more recent studies (e.g.,
Kirkpatrick-Steger et al., 1998; Wasserman et al., 1993), on
the other. One important aspect of Cerella’s (1980)
experiment is that he divided cartoon objects into only
three parts (legs, torso, and head) that preserved substantial
local spatial information; furthermore, these parts were
horizontally aligned when they were scrambled, which
retained some global properties, such as the object’s aspect
ratio. Thus, Cerella’s (1980) manipulation might have left
untouched much of the spatial structure to which the
pigeons were sensitive, not affecting their performance to
a substantial degree. On the other hand, in more recent
studies, objects were divided into many parts and their
scramblings were misaligned. These stimulus manipula-
tions might have disrupted spatial structure information at
several different scales. If, as proposed here, pigeons
represent objects through a large bank of overlapping
feature detectors, the effects of the spatial rearrangement
of an object’s parts would depend on exactly how the
rearrangement was accomplished, because spatial informa-
tion is implicitly represented and distributed across all of
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the feature detectors. Some of these detectors implicitly
code for the arrangement of local features, whereas others
code for the more global arrangement of object parts.
Because all of these aspects of the stimulus can gain control
over behavior during learning, the results of a scrambling
test critically depend on what type of spatial information is
affected by the scrambling procedure.

Effect of changes in surface features Pigeons are very
sensitive to transformations of an object that leave its
outline intact, while changing only its internal surface
features. Several studies (Cabe, 1976; Cook, Wright, &
Kendrick, 1990; Young, Peissig, Wasserman, & Biederman,
2001) have provided evidence that the drop in object
recognition performance that is caused by the deletion of
surface features is larger when pigeons are tested with line
drawings than when they are tested with silhouettes.

Young et al. (2001, Exp. 1) trained pigeons to discriminate
four geons that were rendered from a single viewpoint. After
they achieved high levels of performance in the task, the
birds were tested with the same geons transformed in three
ways (see Fig. 8a): (1) under a change in the direction of
illumination; (2) with all of the internal shading removed and
replaced by the average luminance of the object, producing a

silhouette; or (3) with the object’s internal shading removed,
but with all of the edge information retained, producing a
line drawing. The results are presented in the left part of
Fig. 8b and show that all of the transformations produced
large drops in accuracy. Performance with the line drawings
was the poorest, being close to the chance level of .25,
whereas performance levels with the silhouette and light
change stimuli were somewhat better and similar. This
pattern of results is rather surprising, because both the line
drawing and the light change stimuli contained much more
information about the three-dimensional structure of the
objects than did the silhouette stimuli, while conserving the
same contour information.

The middle part of Fig. 8b shows that this qualitative
pattern of results is reproduced by the general-processes
model, which produces large drops in accuracy to all of the
testing stimuli, with the largest drop to the line drawings.
The right part of Fig. 8b shows that large drops in
performance were not invariably predicted by the ideal-
observer model; indeed, this model predicted a large drop
in performance only for the line drawings.

Why does the general-processes model produce such
large drops in performance with these test stimuli? The
answer lies in the fact that, at the beginning of the hierarchy

Fig. 8 (a) Examples of the
types of testing stimuli used by
Young et al. (2001) to test the
recognition of geons by pigeons
across variations in surface fea-
tures: illumination change, sil-
houette, and line drawing
versions of the original training
stimuli. (b) Pigeon data (left)
and results simulated with the
general-processes model (mid-
dle) and an ideal-observer model
(right) for Young et al.’s Exper-
iment 1, which tested recogni-
tion of geons across variations
in surface features: silhouette,
illumination change, and line
drawing versions of the original
training stimuli
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of processing, the image is filtered using a battery of Gabor
functions at several different scales. In this wavelet-like
decomposition of the image (Field, 1999; Stevens, 2004),
which is carried out by V1 neurons in the primate brain,
filters at the largest scales can detect changes in luminance
such as those produced by a gray object over a white
background; filters at smaller scales can detect changes in
luminance such as those produced by the reflection of light
on the smooth surface of the object; and filters at the
smallest scales can detect local changes in luminance such
as those produced by the object’s edges. During learning,
the model relies on all of this information for recognition.
The more information about luminance changes that is
removed from the original object, regardless of the spatial
scale of these changes, the more performance will suffer.

One aspect of the results that was not reproduced by the
general-processes model was that the pigeons’ performance
with line drawings was at chance. Because pigeons can
readily discriminate line drawings of complex objects
(Kirkpatrick, 2001), this result cannot be due to the birds’
inability to detect the fine-edge information in the images.
Instead, this recognition failure might result from a bias, not
reproduced by the model, toward relying more heavily on
luminance changes at larger scales whenever this informa-
tion is available. That is, pigeons may rely much more
heavily than the model on the coarse disparities in
luminance that exist between the inside and the outside of
each object, so that when this information is removed,
performance drops precipitously.

Effects of exponential and linear variations in size Many
studies have tested pigeons’ recognition of objects varying in
size (Larsen & Bundesen, 1978; Peissig, Kirkpatrick, Young,
Wasserman, & Biederman, 2006; Pisacreta, Potter, & Lefave,
1984). In general, pigeons show generalization of perfor-
mance to known objects at novel sizes. Nevertheless, they
also show decrements in accuracy to novel sizes, with larger
decrements to more disparate sizes.

Peissig et al. (2006) also explored which types of size
transformations yield symmetrical generalization gradients.
Four geons were linearly varied in size, by increasing size
in constant steps, or exponentially varied in size, by
increasing size in steps approximately proportional to the
current size. Examples of both transformations are shown in
Fig. 9a. Pigeons were trained with the size in the middle of
both scales (geons labeled “0” in Fig. 9a) in a four-
alternative forced choice task until they reached high levels
of recognition accuracy. Then they were tested with the
linear and exponential size variations, producing the
generalization gradients shown in the left part of Fig. 9b.
The exponential scale produced a more symmetrical
generalization gradient, whereas the linear scale yielded
smaller drops in performance for stimuli that increased in

size than for stimuli that decreased in size by the same
amount. These results suggest that visual size conforms to
Fechner’s law: namely, a logarithmic relation between
physical and perceived size.

The gradients resulting from a simulation of this
experiment with the general-processes model are shown in
the middle part of Fig. 9b, and the ideal-observer results are
shown in the right part of this figure. The general-processes
model reproduced all of the important aspects of the
behavioral results: above-chance performance for all sizes,
which decreased monotonically as a function of the
difference from the original size; a symmetrical gradient
for stimuli that changed along an exponential scale; and an
asymmetrical gradient for stimuli that changed along a
linear scale. None of these results was predicted by the
ideal observer. The general-processes model did not
reproduce the small generalization decrement that was
observed with sizes –1 and 1 in the linear transformation
condition. However, the qualitative pattern of results was
nicely reproduced, including the specific relation between
the physical image changes and the corresponding changes
in performance.

The complexity of the model makes it difficult to specify
why the experimental results were reproduced. One
possibility is that, in a linear size transformation, more
feature detectors that respond to the training image reduce
their response with an increase in size than with a decrease
in size. Imagine a simplified, unidimensional model, in
which a set of edge detectors, all of the same size and scale,
are collinearly arranged. The model is presented with a line,
and a number of units respond vigorously and are
associated with a response. If we linearly increase the size
of this line, the same edge detectors will still respond, and
high generalization will be observed. However, if we
linearly decrease the size of this line, a number of edge
detectors that had previously responded will stop doing so,
and a response decrement will be observed. This process
could be transpiring, at a larger scale, with the linear size
transformation. In the exponential size transformation,
though, decrements are smaller than increments. In our
example, the size increments might be so dramatic as to
“misalign” the edges in the object with the original detectors,
producing a stronger generalization decrement because the
object’s edges are now outside the detectors’ receptive fields.

Discussion

This article integrates neurobiological, behavioral, and
computational evidence for the involvement of “general
processes” in object recognition by people and pigeons.
Our main goal here was to present arguments and evidence
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suggesting (1) that differences between birds and primates
should not be taken as evidence of completely specialized
visual systems, (2) that it is likely that these two types of
animals share common processes of object recognition, and
(3) that birds can and should be used by the cognitive
neuroscience community as a model for the study of some
of the processes that are involved in object recognition by
people.

Specifically, we reviewed prior work suggesting a role for
error-driven associative learning in visual object categoriza-
tion and we presented new computational evidence that some
of the principles of visual processing discovered in the primate
ventral stream can account for a wide range of behavioral
results from studies of avian object perception. The successful
series of simulations provides a proof of concept that general
mechanisms of visual shape processing underlie key aspects
of object recognition across even distantly related vertebrate
species. The computational evidence adds to a wealth of

empirical results that point to the existence and significance of
such general processes.

We do caution that these results should not be taken as
more than a proof of concept, unless future research on the
neurophysiology of the avian tectofugal visual pathway
reveals that the mechanisms embedded in feedforward
hierarchical object recognition architectures are indeed at
work in birds, as they are in primates. As we noted earlier,
there is some empirical support for this assertion (Li et al.,
2007), but evidence from neural recordings across all stages
of the tectofugal pathway and its pallial targets will be
needed in order to reach a stronger conclusion.

Relatedly, we emphasize that we have used the model of
Serre and colleagues (Serre, 2006; Serre et al., 2005; Serre
et al., 2007) simply as a tool to provide such proof of
concept. It is likely that this model does not capture the full
complexity of visual processing in the ventral stream.
However, we have used this model because it implements

Fig. 9 (a) Examples of the types of stimuli used by Peissig et al.
(2006) to test the recognition of geons by pigeons across linear and
exponential size variations. Numbers represent scaling steps from the
original training images (denoted by 0). (b) Pigeon data (left) and

results simulated with the general-processes model (middle) and an
ideal-observer model (right) for Experiment 2 in Peissig et al. (2006),
which tested the recognition of geons across linear and exponential
size variations
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feedforward and hierarchical processing of shape informa-
tion, a mechanism that seems to be backed up by an
important amount of evidence from primate neurophysiol-
ogy (reviewed earlier). Our conclusions will remain valid
unless new data disprove the central role that is currently
assigned to feedforward and hierarchical processing in the
construction of receptive-field selectivity and invariance for
neurons in the ventral stream.

Regardless of these considerations, it is noteworthy that a
model rooted in primate neurobiology does such a good job
explaining avian object recognition, given the behavioral and
neurobiological differences in object recognition by birds and
primates reviewed in the introduction. We hope that the
present computational work, together with our previous
empirical work, will encourage neuroscientists to further test
the hypothesis of common neurocomputational mechanisms
and to consider birds as potentially fruitful models for the
study of biological object recognition.

If, as we have suggested, feedforward and hierarchical
visual shape processing is common to such distantly related
taxa as birds and primates, then two important questions
immediately arise. The first and most obvious question,
from a comparative standpoint, is whether these common
processes are the results of conservation or of independent
evolution. Some might propose that the results of studies of
avian object recognition can only inform the study of
human object recognition if the underlying structures are
homologous. We, on the contrary, believe that even if the
neural structures underlying object recognition in birds and
primates are not homologous, but do implement similar
mechanisms of visual processing, then the study of such
mechanisms in birds at both behavioral and neurobiological
levels can give us important insights into biological vision,
in general, and human vision, in particular.

The fact that visual environments seem to select one
particular form of visual computation and not others prompts
the second question, which is even more important for our
understanding the evolution of cognition: Namely, what gives
this form of computation its “generality” for solving visual
problems across different environments? If feedforward
hierarchical processing is truly a mechanism that is shared
by many vertebrate species, then it will be critical for future
work to provide insight into which aspects of the varied visual
tasks that are faced by these species have shaped the way in
which this form of visual processing works.

A key point of discussion is that the model that we have
used yielded results that more closely approximated pigeon
than human behavior in several experimental designs. The
model was sensitive to a number of stimulus transforma-
tions to which pigeons, but not people, are also sensitive.
People exhibit viewpoint-invariant object recognition when
they are tested with the appropriate stimuli (Biederman &
Gerhardstein, 1993) and with interpolated novel views of

an object (Spetch & Friedman, 2003; Spetch et al., 2001);
they exhibit scale-invariant recognition (Biederman &
Cooper, 1992) and they do not exhibit dramatic drops in
performance after the deletion of internal surface features
(Biederman & Ju, 1988; Hayward, 1998). If our interpreta-
tion of the simulation results presented here in terms of
general processes is correct, then the behavioral disparities
that have been found between pigeons and people are likely to
be the consequence of differences in processes other than the
extraction of visual shape information and error-driven
categorization learning. That is, whereas these two mecha-
nisms may be common to both birds and primates, both types
of animals may also show more specialized processes that
have an impact on object recognition. As was noted earlier,
this pattern of results is exactly what we would expect by
studying most forms of cognition from an evolutionary
perspective.

For example, better recognition with interpolated views
of an object, reported in people but not in pigeons (Spetch
& Friedman, 2003; Spetch et al., 2001), might require the
ability to manipulate representations of objects through
either “mental rotation” (Tarr & Pinker, 1989) or view
interpolation (Bülthoff & Edelman, 1992); these processes
might be absent in birds.

Regarding specialized adaptations in categorization
learning, Ashby and colleagues (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Ashby & Valentin,
2005) have hypothesized two categorization learning
systems in people. The implicit system is based on
procedural learning and is believed to be implemented by
the circuitry of the basal ganglia, similar to the categoriza-
tion system that we have proposed. The explicit system is
based on logical reasoning, working memory, and executive
attention, and is believed to be implemented by the frontal
cortex. Recent evidence (Smith et al., 2011) has suggested
that pigeons, unlike people and other primates, might only
possess the implicit system, which they use to learn any
categorization task. If this conclusion is correct, it is an
open question how the explicit system might influence
visual categorization tasks that are usually encountered in
natural environments, such as object recognition across
changes in viewpoint. The explicit categorization system, or
any of its components, could underlie many of the
disparities that have been observed between people and
pigeons in object recognition.

Note, however, that we have found evidence suggesting
that error-driven learning is involved in human categoriza-
tion of natural objects, even when an explicit verbal rule
can be used to learn a particular task (see Soto &
Wasserman, 2010b). Thus, error-driven learning may
underlie not only the strengthening of stimulus–response
associations, but also the competition between the outputs
of these different systems for control over performance.
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The strictly feedforward model that we have used does
not take into account the fact that connections across the
ventral pathway are bidirectional (Salin & Bullier, 1995).
Whereas feedforward connections are thought to be
responsible for driving the properties of neuronal responses
to external stimuli, feedback connections—which are more
diffuse—are thought to have a modulatory effect on the
activity of neurons (Kveraga, Ghuman, & Bar, 2007).

One possibility is that feedback projections implement
attentional processes that facilitate the processing of the
information that is relevant for a particular task (see Gilbert
& Sigman, 2007; Kastner & Ungerleider, 2000). Attention
and other processes that are carried out through the
feedback visual system might be very important for some
aspects of human object recognition, such as the manipu-
lation of object representations and the selective filtering of
object information that is irrelevant for a particular task
(such as surface features or viewpoint-dependent shape
properties). This role of the feedback system might explain
why the model that we used cannot explain some aspects of
human behavior. It also suggests the interesting possibility
that the model does so well in explaining pigeons’ behavior
because the feedback system in these animals does not
carry out the same functions that it does in primates.

Regardless of the actual underlying cause(s) of the
behavioral disparities that were seen between primates and
birds, our modeling results underscore the importance of
adopting an atomistic and “bottom-up” approach (de Waal
& Ferrari, 2010; Shettleworth, 2010a) to the comparative
study of cognition. Even in the face of behavioral and
neuroanatomical disparities between species, one cannot
dismiss the possibility that some of the subprocesses
underlying a complex behavior are shared. In the case of
object recognition, some discrepancies suggest that the
mechanisms of object recognition might be different in
primates and birds. Our simulations suggest that this
possibility is not necessarily the case for visual shape
processing mechanisms: Most aspects of object recognition
that seem to be unique to birds can emerge from
computational principles that are known to exist in the
primate visual system.

The proposal that complex cognition can arise from the
interaction of simple, basic processes is widespread among
theories of human cognition. Comparative cognition can be
instrumental in the discovery of the basic computational
processes that bring about complex cognition in biological
systems. We believe that this search should focus on
general processes that are common to many species. Such
processes, selected by diverse environments throughout
evolution, are a solution to what are likely to be the most
vital aspects of the computational problems that are faced
by biological systems; these processes should be deemed
the cornerstone on which biological cognition rests.
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Supplementary Material 

 

The Hierarchical Model of Serre and Colleagues 

 The model of visual processing that we used for our simulations was directly taken from 

Serre, Oliva, and Poggio (2007). Those authors have provided MATLAB code which we used in 

our simulations and can be found at the following website: 

http://cbcl.mit.edu/software-datasets/index.html 

The original model consists of 9 hierarchically ordered layers of units: Layers S1, C1, S2, 

C2, S2b, S3, C2b, C3, and S4. Our simulations used only the first 8 layers. The final layer in the 

original model was part of a classification learning procedure, which we have replaced in our 

simulations with a reinforcement learning procedure. Each one of the layers in the model is 

organized in a number of feature maps, in which all of the units have the same selectivity, but 

their receptive fields are at different scales and positions. The selectivity of all of the units in the 

same feature map is represented by a vector of weights w. 

As in all hierarchical models of visual processing, this model extends the original 

functional architecture that was proposed by Hubel and Wiesel (1968), comprising two layers of 

units which are interspersed across the hierarchy. Units in the S layers carry out a feature 

selection operation, responding to features that result from a combination of inputs from units in 

the prior layer. Each simple unit receives inputs from 

! 

nSk  units from the prior layer and it has a 

preferred pattern of stimulation that is represented by the vector of weights w. Given a vector x 

representing the input received by the unit, its response y is a Gaussian-like tuning operation: 

! 

y = exp "
1
2#2

w j " x j( )
2

j=1

nSk

$
% 

& 
' ' 

( 

) 
* *          (1) 



 2 

, where ! represents the sharpness of the tuning function and j indexes the synaptic inputs to the 

unit. 

 Units in the C layers carry out a pooling operation, combining inputs from 

! 

nCk
units in the 

prior layer tuned to the same feature over a range of positions and scales. Given a vector x 

representing the input received by the unit, its response y is equal to the maximum value among 

its inputs: 

! 

y = max
j=1...nCk

x j            (2) 

 Layer S1. All images were resized to 256 ! 256 pixels before being processed by the 

filters in Layer S1. The weight vector w for S1 units takes the form of a Gabor function, 

described by the following equation: 

! 

F u1,u2( ) = exp "
# u 1
2 +$ 2 # u 2

2( )
2% 2

& 

' 

( 
( 

) 

* 

+ 
+ cos 2,

# u 1
-

+.
& 

' 
( 

) 

* 
+       (3) 

, where (u1,u2) are 2D coordinates within the receptive field of the S1 unit, and 

! 

" u 1 = u1 cos# + u2 sin#  

, and 

! 

" u 2 = #u1 sin$ + u2 cos$  

 The phase offset parameter, ", was set to 0 for all of the units and the aspect ratio # was 

fixed to 0.3. There were 68 feature maps in Layer S1, obtained from the combination of 4 

orientations " (0°, 45°, 90°, and 135°) and 17 sizes of receptive fields (in pixels: 7, 9, 11, 13, 15, 

17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 and 39). Each feature map consisted of the repetition of 

the same feature detector in different positions on the image. Each pixel in the image was thus 

processed by a full set of 68 feature detectors. For each receptive field size, the values of the 

parameters # and ! were obtained from the following ad hoc equations: 
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! 

" = 0.0036size2 + 0.35size + 0.18        (4) 

! 

" =
#
0.8

          (5) 

, which were created by the authors to reproduce properties of V1 simple cells (see Serre et al., 

2005).  

 The response of S1 units was given by Equation 1, where wj = F u1,u2( )  was computed 

according to Equation 3 and xj was the intensity value of pixel j in a small patch of the input 

image that fell within the unit’s receptive field. 

 Layer C1. Units in C1 received their inputs from a grid of topologically organized S1 

units with the same orientation selectivity; their response was computed according to Equation 2. 

To determine the inputs to C1 units, S1 units were organized in 8 bands according to their 

receptive field size. For each band, a grid of size 

! 

"NC1
S # "NC1

S  was built and a max was taken 

over the resulting grid and across all scales in the band. To improve processing time, C1 units 

were downsampled and computed every $C1 S1 units. The bands and parameter values were: 

Band 1: sizes 7 and 9, 

! 

"NC1
S =8, $C1=3. 

Band 2: sizes 11 and 13, 

! 

"NC1
S =10, $C1=5. 

Band 3: sizes 15 and 17, 

! 

"NC1
S =12, $C1=7. 

Band 4: sizes 19 and 21, 

! 

"NC1
S =14, $C1=8. 

Band 5: sizes 23 and 25, 

! 

"NC1
S =16, $C1=10. 

Band 6: sizes 27 and 29, 

! 

"NC1
S =18, $C1=12. 

Band 7: sizes 31 and 33, 

! 

"NC1
S =20, $C1=13. 

Band 8: sizes 35, 37 and 39, 

! 

"NC1
S =22, $C1=15. 
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 Layer S2. Each S2 unit received 10 inputs selected at random from a 3 ! 3 neighborhood 

of C1 units at 4 possible orientations. The response of the unit was given by Equation 1, where w 

is a vector of weights learned from natural images using a very simple procedure. During 

learning, the model was presented with a randomly selected image patch and the pattern of 

activation in the C1 inputs was set as its preferred pattern w (see Serre, 2006). About 2,000 

selectivities were learned this way and were replicated across the visual field and all 8 scale 

bands. 

 Layer S2b. The responses of S2b units were computed as those of S2 units, but from 100 

inputs selected at random from an 

! 

"NS2b # "NS2b
S  neighborhood of C1 units at 4 possible 

orientations. There were 4 different neighborhood sizes 

! 

"NS2b : 6, 9, 12, and 15. There were 

about 500 learned selectivities at each neighborhood size, for a total of 2,000. 

 Layer C2. Units in C2 received their inputs from a grid of topologically organized S2 

units with the same selectivity; their response was computed according to Equation 2. To 

determine the inputs to C2 units, S2 units were organized in 4 bands according to receptive field 

size, each created by the union of 2 C1 bands. For each band, a grid of size 

! 

"NC 2
S # "NC 2

S  was 

built and a max was taken over the resulting grid and across the two scales. To improve 

processing time, C2 units were downsampled and computed every $C2 S2 units. The bands and 

parameter values were the following: 

Band 1: C1 bands 1 and 2, 

! 

"NC 2
S =8, $C1=3. 

Band 2: C1 bands 3 and 4, 

! 

"NC 2
S =12, $C1=7. 

Band 3: C1 bands 5 and 6, 

! 

"NC 2
S =16, $C1=10. 

Band 4: C1 bands 7 and 8, 

! 

"NC 2
S =20, $C1=13. 
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Layer C2b. The responses of C3 units were computed as those of C2 units, but with a 

receptive field of the size of the whole stimulus, obtained by pooling all C1 bands together. The 

grid size 

! 

"NC 3
S  was equal to 40. 

 Layer S3. The responses of S3 units were computed as those of S2 units, randomly 

selecting 100 inputs from a 3 ! 3 neighborhood of C1 units at all possible S2 selectivities. Again, 

there were a total of 2,000 learned selectivities. 

 Layer C3. The responses of C3 units were computed as those of C2 units, but with a 

receptive field of the size of the whole stimulus, obtained by pooling all C1 bands together. The 

grid size 

! 

"NC 3
S  was equal to 40. 

 

The Ideal Observer Model. 

The ideal observer model used in our simulations was developed by Tjan et al. (1995) 

and it is often used as a benchmark in visual categorization studies. The model allows one to 

determine which aspects of an experimental outcome can be explained as resulting directly from 

task and stimulus demands and not from any visual processing carried out by the experimental 

subjects. This model assumes an observer that knows all possible training stimuli and their 

assigned responses a priori. The task of the observer is to choose the object Oi with the highest a 

posteriori probability given the presentation of an image R; that is, it must choose a response that 

maximizes 

! 

p Oi R( ). There are a number of templates (e.g., views) of Oi that are known to the 

observer, represented by Tij, where j indexes the template. The probability of object Oi being 

presented is the sum of the probabilities of each of the individual templates being presented; 

according to Bayes’ rule this probability is: 
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! 

p Oi R( ) = p Tij R( )
j
" =

p R  Tij( )p Tij( )
p R( )j

"       (6) 

If the images Tij and R are vectors of pixels, each with a luminance value, and under the 

assumption that image R is generated from the template of a single object, perturbed by the 

addition of Gaussian noise with zero mean and standard deviation !, then Tjan et al. (1995) have 

shown that maximizing Equation 6 is equivalent to maximizing the following: 

! 

" L i( ) = exp #
1
2$2

R #Tij

2% 

& 
' 

( 

) 
* 

j
+ p Tij( )       (7) 

 That is, the optimal strategy is to compute the sum of a similarity measure between R and 

each template Tij, weighted by the probability of template Tij. 

Note that this ideal observer assumes a visual task in which there is inherent noise in the 

signal that serves as input to the pigeons’ visual system. Uncertainty, in the form of normally 

distributed noise, is assumed to be an important part of the visual environment. Our simulations 

thus required adding Gaussian noise with zero mean to the images that were presented to the 

ideal observer. The value of ! was adjusted to bring the performance of the ideal observer to the 

level that was exhibited by the subjects in each experiment. This process allowed us to determine 

what performance we would expect from the birds if they were basing their responding on pixel 

similarities among the visual stimuli and their suboptimal performance with the training stimuli 

was due to noise in the signal. This adjustment of ! was performed using QUEST (Watson & 

Pelli, 1983), an adaptive psychometric procedure that is useful to find the value of a stimulus 

variable that produces a particular performance value (e.g., 85% correct). The noise statistics 

were available to the ideal observer, which compared the resulting image against all of the 

training images included in the task, giving as output the category label with the highest a 
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posteriori probability computed according to Equation 7. In trials with novel test stimuli, the 

category label was computed based on knowledge of the training images alone. 
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Supplementary Table 1 

Standard error for all mean values obtained from simulations with the general processes model 

and reported in the main article. 

 
Experiment; Figure 

 
Condition 

 
Standard 
Error 

 
Spetch et al. (2001); Figure 4B 

 
Group 0-part 

 

 Rotation 0° .0102 
 Rotation 30° .0311 
 Rotation 90° .0114 
 Rotation 135° .0226 
 Rotation 160° .0185 
 Rotation 225° .0326 
   
 Group 1-part  
 Rotation 0° .0099 
 Rotation 30° .0218 
 Rotation 90° .0092 
 Rotation 135° .0207 
 Rotation 160° .0184 
 Rotation 225° .0282 
   
 Group 3-part  
 Rotation 0° .0115 
 Rotation 30° .0218 
 Rotation 90° .0068 
 Rotation 135° .0235 
 Rotation 160° .0213 
 Rotation 225° .0267 
   
 Group 5-part  
 Rotation 0° .0101 
 Rotation 30° .0176 
 Rotation 90° .0077 
 Rotation 135° .0211 
 Rotation 160° .0208 
 Rotation 225° 

 
.0251 

 
Peissig et al. (2002); Figure 5  

 
Group Five Views 

 

 Rotation 0° .0131 
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 Rotation 36° .0155 
 Rotation 72° .0154 
 Rotation 108° .0242 
 Rotation 144° .0137 
 Rotation 180° .0080 
 Rotation -144° .0203 
 Rotation -108° .0171 
 Rotation -72° .0185 
 Rotation -36° .0142 
   
 Group One View  
 Rotation 0° .0099 
 Rotation 36° .0164 
 Rotation 72° .0183 
 Rotation 108° .0208 
 Rotation 144° .0120 
 Rotation 180° .0237 
 Rotation -144° .0175 
 Rotation -108° .0139 
 Rotation -72° .0205 
 Rotation -36° .0106 

 
 
Gibson et al. (2007); Figure 6B 

 
Cotermination 

 
.0254 

 Edge .0093 
 Shading .0098 

 
 
Van Hamme et al. (1992, Exp. 2); Figure 7B  

 
Original 

 
.0063 

 Complementary .0539 
 Scrambled Complementary .0349 

 
 
Van Hamme et al. (1992, Exp. 3); Figure 7C 

 
Original 

 
.0064 

 Scrambled Mild .0460* 
 Scrambled Heavy .0264* 

 
 
Young et al. (2001); Figure 8B 

 
Training Stimulus 

 
.0018 

 Silhouette .0143 
 Light Change .0132 
 Line Drawing .0156 

 
 
Peissig et al. (2006); Figure 9B 

 
Exponential Size Transformation 
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 Size -3 .0279 
 Size -2 .0163 
 Size -1 .0231 
 Size 0 .0159 
 Size 1 .0201 
 Size 2 .0105 
 Size 3 .0371 
   
 Linear Size Transformation  
 Size -3 .0117 
 Size -2 .0156 
 Size -1 .0110 
 Size 0 .0197 
 Size 1 .0183 
 Size 2 .0154 
 Size 3 .0127 

 
 

                                                
* These standard errors are large relative to the small difference in the mean proportion of correct 
responses between the Scrambled Mild and Scrambled Heavy conditions. A larger set of 30 
simulations confirmed the mean difference between conditions (MMild = .44; MHeavy = .39) and 
resulted in smaller standard errors (SEMild = .0198; SEHeavy = .0164). 
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