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The authors present a quantitative framework for interpreting the results of multidimensional stimulus
generalization experiments in animals using concepts derived from the geometrical approach to human
cognition. The authors apply the model to the analysis of stimulus generalization data obtained from
pigeons trained with different sets of stimuli varying along two orthogonal dimensions. Separable
pigeons were trained with stimuli varying along the dimensions of circle size and line tilt, dimensions
found to be separable in previous human research; integral pigeons were trained with stimuli varying
along two dimensions of rotation in depth, dimensions that are intuitively integral and which hold special
interest for theories of object recognition. The model accurately described the stimulus generalization
data, with best fits to the City-Block metric for separable pigeons and to the euclidean metric for integral
pigeons.
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The objects and scenes that organisms encounter in their natural
environments are often extraordinarily complex, and they vary
along multiple dimensions. For this reason, a key question in the
study of animal visual cognition is how different dimensions of a
stimulus interact with each other. One way to investigate this
dimensional interaction is through studies of multidimensional
stimulus generalization.

Consider the simple case in which a training stimulus is changed
along two dimensions. If it is possible to find a combination rule
to predict generalization after a bidimensional change in the stim-
ulus from generalization after unidimensional changes along each
dimension alone, then this rule might provide important insights
into how these dimensions are processed, represented, and com-
bined.

In human research, the distinction between separable and inte-
gral stimulus dimensions has been of considerable value in the
study of dimensional interaction (Garner, 1974; Shepard, 1991).
Separable dimensions are those that can be attended to and pro-
cessed independently of each other; here, the dimensional structure
itself determines the similarity between stimuli. Integral dimen-
sions are those that cannot be attended to and processed indepen-
dently of each other; here, the similarity between stimuli is directly
perceived and the notion of multiple dimensions loses meaning.
Instead, the stimuli can be envisioned as varying along a single,
“integral” dimension.

One approach to the study of multidimensional stimulus gener-
alization in humans has used generalization measures as input to

multidimensional scaling (MDS) procedures, which yield as output
a representation of similarities between the stimuli in terms of their
distance along a small number of orthogonal dimensions in psy-
chological space (for a review, see Nosofsky, 1992). A central
question concerning these spatial representations is how to com-
pute the distance between points from their coordinates in the
dimensions of this space. One alternative is to compute the dis-
tance between points as the sum of their distances along each
dimension, in what is commonly called the City-Block metric. A
second alternative is to use the Pythagorean formula to compute
the straight-line distance between points, in what is commonly
called the euclidean metric.

Separable dimensions are conceptually related to the City-Block
metric; in this case, the dimensional structure of the similarity
space completely determines the distances between different stim-
uli in the coordinate system. Integral dimensions are conceptually
related to the euclidean metric; in this case, the distances between
different points in the similarity space are indifferent to the spe-
cific dimensions that are chosen to describe the stimuli. In line
with this well-known dichotomy, good empirical accord as to the
separability or integrality of different stimulus dimensions has
emerged from work deploying MDS, as well as from work ana-
lyzing how different dimensions interact during classification tasks
(Garner, 1974; Shepard, 1991).

Early animal research on multidimensional stimulus generaliza-
tion adopted a more descriptive approach to finding a combination
rule to describe the behavioral data (e.g., Butter, 1963; Fink &
Patton, 1953; Rohrbaugh, Brennan, & Riccio, 1971). Guttman
(1956) first suggested that the study of bidimensional stimulus
generalization might prove helpful in distinguishing his “Discrim-
ination Hypothesis,” which proposed that stimulus generalization
results from the failure to discriminate between training and testing
stimuli, from Hull’s (1943) “Excitation Hypothesis,” which pro-
posed that stimulus generalization results from the immediate
spread of excitation from the training stimulus to the testing

Fabian A. Soto and Edward A. Wasserman, Department of Psychology,
University of Iowa.

This research was supported by National Institute of Mental Health
Grant MH47313 awarded to Edward A. Wasserman.

Correspondence concerning this article should be addressed to Fabian
A. Soto, Department of Psychology, University of Iowa, Iowa City, IA
52242. E-mail: fabian-soto@uiowa.edu

Journal of Experimental Psychology: © 2010 American Psychological Association
Animal Behavior Processes
2010, Vol. 36, No. 2, 194–205

0097-7403/10/$12.00 DOI: 10.1037/a0016560

194



stimuli, with no need of discrimination training. According to
Guttman (1956), Hull’s Excitation Hypothesis implies that a bidi-
mensional stimulus generalization gradient can be obtained by
rotating a unidimensional stimulus generalization gradient around
its peak. The bidimensional gradient should thus have the same
shape regardless of the means by which a stimulus is changed:
along one dimension, along a second dimension, or along both
dimensions. Guttman’s Discrimination Hypothesis predicts a dif-
ferent bidimensional stimulus generalization gradient, in which the
combined changes along two dimensions should produce more
pronounced drops in responding than changes along a single
dimension.

Jones (1962) linked each of these hypotheses to a different
quantitative combination rule for multidimensional stimulus gen-
eralization. And, Cross (1965) associated each of these hypotheses
and their combination rules with work in MDS; he proposed that
the Excitation Model be considered equivalent to the euclidean
metric and that the Discrimination Model be considered equivalent
to the City-Block metric.

These early analyses assumed that stimulus generalization gra-
dients could be made linear and of equivalent slope through
appropriate scaling of physical dimensions (Cross, 1965; Jones,
1962). One of the most appealing aspects of the geometrical
approach to human cognition is that it represents stimulus gener-
alization data through the concept of psychological distance; here,
the focus is on what stimulus generalization behavior tells us about
the underlying representation of similarity between stimuli, instead
of trying to describe the stimulus generalization data as a function
of some physical index of similarity.

Although the usual multidimensional stimulus generalization
study does not yield enough data to conduct MDS, it does offer
ways in which the behavioral data can support inferences about
dimensional interaction. We next show how this analysis can be
accomplished using our own spatial model. The main idea behind
this model is to transform the observed stimulus generalization
data into measures of psychological distance and to use these
distances to find the metric in psychological space that best repro-
duces the observed behavior. This metric depends on the value of
a single free parameter, r, which determines how the distance
between points in psychological space can be computed from their
distance along each axis in the space.

A Model of Multidimensional Stimulus Generalization

A commonly used task to study generalization in animals is one
in which a single stimulus is reinforced and all other stimuli are not
reinforced. This simple procedure allows one to obtain estimates of
the probability of responding to each stimulus. These generaliza-
tion measures can be transformed into estimates of psychological
distance if we make some assumptions about the function relating
both variables. Once this function is identified, distances can be
computed using the inverse transformation over the generalization
data.

There is substantial evidence that an exponential function relates
psychological distance to stimulus generalization behavior (Shep-
ard, 1987). This relation has been found in both human and animal
generalization studies and using stimuli which are varied along
many different dimensions, including the generalization gradients
obtained by Guttman and Kalish (1956) in their pioneering work

with the pigeon (Shepard, 1965). If the assumption is correct that
generalization is an exponential function of psychological dis-
tance, then the natural logarithm of the generalization data should
provide a good estimate of distance in psychological space:

dij � �ln�gij� (1)

where dij stands for psychological distance and gij represents the
measure of stimulus generalization behavior.

Once obtained, these distances must be arranged in a spatial
configuration in which the manipulated stimulus dimensions are
represented as continuous and orthogonal dimensions in psycho-
logical space. For this task, we must assume: correspondence,
interdimensional additivity, and intradimensional subtractivity
(see Beals, Krantz, & Tversky, 1968; Dunn, 1983). Correspon-
dence assumes that stimuli which vary along a physical dimension
are represented as varying along a psychological dimension as
well, falling along a straight line which is parallel to one of the
main axes of psychological space. Interdimensional additivity as-
sumes that all of the psychological dimensions are orthogonal to
each other, allowing one to compute distances between stimuli as
a function of the additive combination of their distances along each
dimension. Intradimensional subtractivity assumes that the dis-
tance between points along a single dimension can be computed by
subtracting the distances of those points to the origin from each
other.

In this way, all of the stimuli that vary along only one dimension
from the target can be represented as lying along one of several
orthogonal straight lines in psychological space, thereby forming a
coordinate system. All of the other stimuli (those that differ in
more than one dimension from the target) can be correspondingly
positioned in this coordinate system and their distances to the
target at the origin can be computed using the well-known
Minkowski metric:

dij �
r��

k�1

K

dik
r (2)

Equation 2 indicates how the distance between stimuli i and j
(dij) can be computed from the distance between those stimuli
along each dimension k (dik). The value of parameter r determines
the specific metric that is used to compute distances in psycho-
logical space from distances along each dimension. When r � 1,
the distance between points is simply the sum of their distance
along each dimension, that is, the City-Block metric. When r � 2,
the distance is computed using the Pythagorean theorem, that is,
the euclidean metric. Replacing (1) in (2), and solving for gij, we
obtain a model to predict generalization after combined changes in
stimulus dimensions from generalization after changes in each
dimension alone:

gij � exp��
r��

k�1

K

��ln�gik��
r� (3)

The inputs to equation (3) are measures of generalization to
stimuli which are changed in only one dimension from a target.
The resulting values are predictions of generalization to stimuli
which are changed in multiple dimensions from the target, and
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which can be compared to the actual generalization data to find the
value of free parameter r that best fits with the observed general-
ization gradients. In this way, the search for a combination rule
becomes a matter of discovering the metric of a spatial model that
best describes the generalization data.

Several of the combination rules that have been proposed in the
animal learning literature are special cases of equation (3). The
multiplicative rule (Butter, 1963), according to which the proba-
bility of responding to a stimulus that is changed in two dimen-
sions is equal to the product of the probabilities of responding to
stimuli that are changed in each dimension alone, is equivalent to
the City-Block metric, because the multiplication operation is
equivalent to addition along a logarithmic scale. Thus, the City-
Block metric is related to statistical independence in the processing
of both dimensions of the stimulus (Blough, 1972) and to the
Discrimination Model of generalization in animal learning theory
(Cross, 1965; Guttman, 1956). The euclidean metric, which pre-
dicts greater generalization values than those that are expected
from the City-Block metric, is related to the excitation model of
generalization in animal learning theory (Cross, 1965; Hull, 1943).
Finally, a value of r � � leads to what has been called the
dominance metric, which translates into a behavioral rule predict-
ing that generalization after changes in several dimensions equals
the smaller level of generalization after changes in each of the
dimensions alone, a rule also known as the “better criterion” model
(Jones, 1962) and which has been studied in the animal literature
as well (Warren, 1954).

The advantages of our spatial model are clear. It offers both
mathematical precision and theoretical generality, because it con-
tains most of the combination rules that have been proposed in the
animal literature plus several other intermediate rules. Because our
model can adopt several combination rules depending on the value
of r, it captures the idea that different dimensions of a visual
stimulus can interact with each other in multiple ways and that
there is no single combination rule that can describe multidimen-
sional generalization for all possible stimulus sets. Our model also
implies that combination rules do not vary categorically. Instead,
there is a gradual shift from one combination rule to the other—
depending on changes in the continuously valued parameter
r—and any of the intermediate rules may describe the generaliza-
tion data for a particular set of stimulus dimensions. Thus, our
spatial model goes well beyond previous approaches to the study
of multidimensional stimulus generalization, which assumed that a
single combination rule can describe generalization for several
different sets of dimensions and which focused on seeking the best
rule among several candidates through a purely trial-and-error
process (e.g., Blough, 1972; Jones, 1962).

Instead, we suggest that a better strategy involves trying to
understand the way in which specific stimulus dimensions interact
with each other in a discrimination task and to characterize the
relation between this dimensional interaction and the combination
rules that are identified in the generalization data. Our model
makes explicit the relation between different combination rules
and the various metrics of psychological space that would produce
them, including the City-Block and euclidean metrics. Because
these two metrics have been related to the key concepts of dimen-
sional separability and integrality in human research, we expect
that stimuli which vary along separable dimensions should pro-
duce generalization data that better fit with the City-Block metric

(r � 1) than with the euclidean metric (r � 2) and vice versa for
stimuli which vary along integral dimensions.

In the remainder of this article, we evaluate the utility of our
model by applying it to the description of generalization data
obtained from different sets of visual stimuli. We created these
stimulus sets by manipulating dimensions that are believed to be
separable and integral in order to test the prediction that a spatial
model should point toward a City-Block metric when tested with
the former kinds of dimensions and toward a euclidean metric
when tested with the latter.

Experiment 1

Our first experiment assessed the utility of our spatial model by
applying it to the description of stimulus generalization gradients
which were obtained after manipulating very different dimensions
of multidimensional visual stimuli. One group of pigeons (Group
Separable) was trained with stimuli varying along the dimensions
of size and line tilt, dimensions that are known to be separable
from previous human research (e.g., Garner & Felfoldy, 1970) and
to yield a City-Block metric in MDS (Hyman & Well, 1967;
Shepard, 1991). The second group of pigeons (Group Integral)
was trained on a discrimination involving more complex dimen-
sions and more naturalistic stimuli. The visual images were com-
puter renderings of a three-dimensional object (an airplane), which
was rotated in depth. Rotation in depth is especially interesting
because of its relevance to theories of object recognition (Bieder-
man & Gerhardstein, 1993; Tarr & Bülthoff, 1995) and because
viewpoint is intuitively a single integral dimension that can nev-
ertheless be varied along innumerable pairs of orthogonal axes.

Our straightforward prediction was that the generalization data
of these two groups should produce disparate best-fitting values of
parameter r, indicating that the specific dimensions that are chosen
to build the stimulus set in a generalization experiment materially
affect the combination rule that is used by the animals, even when
all other aspects of the experimental task are kept constant. This
result would suggest that there is no single combination rule,
which can account for multidimensional generalization along all
stimulus dimensions.

We also expected that the generalization data from Group Sep-
arable would better be described by the City-Block metric than by
the euclidean metric, whereas the reverse would be true for Group
Integral. This expectation does not require the best-fitting values of
r to be exactly 1 or 2, which are relatively arbitrary values chosen
in the literature from all possible values that this parameter might
take. The prediction for Group Separable was based on results
from the human literature. To the best of our knowledge, data
supporting this prediction have not been reported in the animal
literature. There are no previous data, human or animal, on which
to base our prediction for Group Integral, but we see no reason to
believe that arbitrarily chosen axes of rotation in depth should
impose their dimensional structure to the representation of view-
point. Instead, we believe that viewpoint is represented by the
pigeons as a single, integral dimension of a complex stimulus.
Because the two dimensions of rotation are arbitrarily selected to
produce changes in viewpoint, they should not interact with one
another in the same way as do the more analyzable dimensions of
line tilt and circle size.
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Method

Subjects. Eight feral pigeons (Columba livia) were kept at
85% of their free-feeding weights by controlled daily feeding. The
birds had previously participated in unrelated research.

Apparatus. The experiment used four 36 � 36 � 41 cm
operant conditioning chambers (Gibson, Wasserman, Frei, &
Miller, 2004), located in a dark room with continuous white noise.
The stimuli were presented on a 15-in. LCD monitor located
behind an AccuTouch resistive touchscreen (Elo TouchSystems,
Fremont, CA), which was coated with mylar for durability. A food
cup was centered on the rear wall of the chamber. A food dispenser
delivered 45-mg food pellets through a vinyl tube into the cup. A
houselight on the rear wall of the chamber provided illumination
during sessions. Each chamber was controlled by an Apple eMac
computer, and the experimental procedure was programmed using
Matlab Version 7.0.4 (The MathWorks, Inc.) with the Psychophys-
ics Toolbox extensions (Brainard, 1997). Images were displayed in
a 6.7-cm square in the middle of the screen; the rest of the screen
was black at all times.

Stimuli. For Group Separable, the stimuli were 36 images of
a circle bisected by a line through its center, which resulted from
factorially combining 6 different circle sizes with 6 different line
orientations. The circle varied in size from 100 to 150 pixels in
10-pixel steps and the line varied in orientation from 0° to 25° in
5° steps (Figure 1, top). These shapes were centered on a gray
square background, 300 � 300 pixels in size, and were created
using Canvas 9.0.4 (ACD Systems Inc.).

For Group Integral, the stimuli were 36 renderings of a three-
dimensional object (an airplane) rotated in depth by 12° intervals
along both its x- and y-axes. There were 6 possible values of
rotation along both axes, ranging from 0° to 60°; the resulting set
of 36 stimuli represented all possible combinations of these values.
The images were rendered over a white background using Carrara
V. 5.0.1 (Eovia Corporation) and each image had a size of 300 �
300 pixels. Two criteria were used to choose the particular ren-
dered viewpoints of the airplane: (1) all of the views avoided
occlusion of one or more of the main parts of the airplane by one
another and (2) there were no extreme disparities in total bright-
ness among the 36 images, as judged by human observers. Two
main sources of light were used: one locked to the camera and the
second positioned to the top-left of the airplane. There was an
angle of 45° between the top of the airplane and the latter light
source (Figure 1, bottom).

Procedure. For each of the two groups (n � 4), a different
target stimulus was randomly selected for each pigeon from a set
of four possible images. In Group Integral, this set included
computer renderings of the airplane at the following combinations
of rotation along the x- and y- axes: (0°, 0°), (0°, 60°), (60°, 0°) and
(60°, 60°). In Group Separable, the set included the circle with the
following combinations of size and line tilt: (100 px, 0°), (150 px,
0°), (100 px, 25°) and (150 px, 25°). Each of the stimuli in these
two sets corresponded to the images positioned in each of the four
corners of the stimulus sets shown in Figure 1.

All trials began with the presentation of a white square in the
center display area of the screen. A single peck anywhere within
the square led to the presentation of the stimulus. On a reinforced
trial, the stimulus was presented and remained on for 15 s; the first
response after this interval turned the display area black and led to

the delivery of food. On a nonreinforced trial, the stimulus was
presented and remained on for 15 s, after which the display area
automatically darkened and the intertrial interval began. On both
reinforced and nonreinforced trials, scored responses were re-
corded only during the first 15 s in which the stimulus was
displayed on the screen. The intertrial interval randomly ranged
from 6 to 10 s. Reinforcement consisted of 1 to 3 food pellets
scheduled randomly from trial to trial.

The experiment begin with a Baseline Training phase during
which all of the trials were reinforced. Each daily session of
Baseline Training was composed of 3 blocks of 60 trials each, for
a total of 180 trials. In each block, there were 24 unscored
presentations of the target stimulus and 1 scored presentation of
each of the 36 visual stimuli, including the 1 future target stimulus
and the 35 future nontarget stimuli. This trial organization was
intended to equilibrate the block structure of this Baseline phase

Figure 1. Stimulus sets used to gather the stimulus generalization data.
The stimuli shown to pigeons in Group Separable were circles that varied
in size and diameter tilt (top). The stimuli shown to pigeons in Group
Integral were renderings of a three-dimensional airplane that were rotated
in depth along two orthogonal axes (bottom).
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and the following Discrimination Training phase. The order of trial
presentation was randomized within each block.

Pigeons were kept on Baseline training until the mean rate of
response to each of the 36 stimuli fell within 80% and 120% of the
overall mean rate of response. This mean response rate was up-
dated daily taking into account all of the scored trials of the past 6
sessions; thus, all of the scored responses in the last 18 trials of
each stimulus were considered. After the pigeons met criterion,
they started Discrimination training.

Each daily session of Discrimination Training was composed of
3 blocks of 60 trials, for a total of 180 trials. In each block, there
were 24 reinforced and unscored presentations of the target stim-
ulus and 1 nonreinforced and scored presentation of each stimulus,
including the 1 target stimulus and the 35 nontarget stimuli. This
procedure of reinforcing 40% of all of the trials assured sustained
responding across discrimination training. Reinforcement of 96%
of the target stimulus trials fostered high rates of responding to this
stimulus, while equilibrating the total number of nonreinforced and
scored presentations of the 1 target stimulus and the 35 nontarget
stimuli for data analysis. The order of trial presentation was
randomized within each block.

A global measure of discrimination performance (Overall Dis-
crimination Ratio, ODR) was computed by taking the mean re-
sponse rate to all 35 of the nontarget stimuli and dividing it by the
mean response rate to the 1 target stimulus. We analyzed the data
from all sessions from the inception of discrimination training until
an ODR less than .30 was obtained across 5 sessions; at this point,
the discrimination between all nontarget stimuli and the target
stimulus was quite strong. Including later sessions in the data
analysis added no useful information because discrimination per-
formance was too good.

Model fit. To fit the behavioral data to our spatial model, the
mean rate of responding to each stimulus across all of the scored
training sessions was used as the behavioral measure of stimulus
generalization. These data were transformed to a scale ranging
from 0 to 1, by dividing them by the mean rate of responding to the
target stimulus. As Shepard (1957) has pointed out, in most be-
havioral studies, the floor of the generalization measure tends to be
higher than 0, because of an initial phase of learning in which
subjects tend to respond randomly. Therefore, each observed gen-
eralization measure Gij is assumed to be equal to the true gener-
alization measure gij plus a constant value C. The value of C is
constant for each subject, but it is reasonable to believe that it
varies for different subjects and for tasks of differing difficulty;
therefore, the value of C must be estimated from the data. Several
approaches have been used for this estimation (Blough, 1988;
Shepard, 1957). Here, we took the simple approach of defining C
as the smallest observed value of Gij. In this way, the obtained
stimulus generalization data were rescaled separately for each
pigeon through the following linear transformation:

gij � �1 � min �Gij��Gij � min �Gij�

We used the resulting stimulus generalization measures to find
the best-fitting value of r in our model, utilizing the Gauss-Newton
method of least-squares estimation with step halving added in the
statistical package JMP IN Version 5.1 (SAS Institute Inc.). For
comparison purposes, lack-of-fit measures were also computed for
the model using values of r equal to 1 and 2, corresponding to the
City-Block and euclidean metrics, respectively.

Results

Baseline training took between 6 and 19 sessions for pigeons in
Group Separable and between 6 and 16 sessions for pigeons in
Group Integral. Discrimination training took between 22 and 42
sessions for pigeons in Group Separable and between 9 and 16
sessions for pigeons in Group Integral.

Generalization gradients are shown in Figure 2, with the data
averaged across all four of the subjects in each group. To test the
statistical reliability of our observations about the mean gradients,
the data that are shown in Figure 2 were entered in a 6 (Dimension
1: Rotation in x-axis for Group Integral; circle size for Group
Separable) � 6 (Dimension 2: Rotation in y-axis for Group Inte-
gral; line tilt for Group Separable) � 2 (Group) analysis of
variance (ANOVA).

The same data are plotted in two different ways. The left part of
Figure 2 shows a three-dimensional surface graph, in which mean
response proportion is plotted against change steps in both stim-
ulus dimensions. For each group, response proportion dropped
monotonically as a function of changes in both dimensions; as
well, changes in two dimensions produced a more marked gener-
alization decrement than did changes in either dimension alone.
This pattern of results was supported by significant effects of
Dimension 1, F(5, 30) � 72.19, p � .0001, Dimension 2, F(5,
30) � 28.05, p � .0001, and the Dimension 1 � Dimension 2
interaction, F(25, 150) � 14.39, p � .0001. The main effect of
Group was not significant, F(1, 6) � .93, p 	 .10.

Beyond these effects, there was a visible disparity between the
groups: in Group Integral changes in the two dimensions supported
similar generalization gradients (which can be taken as evidence
that both dimensions similarly controlled behavior), whereas in
Group Separable responses showed a more marked decline across
changes in circle size than across changes in line tilt. Thus, the
interaction between Dimension 1 (which reflects averages across
the levels of line tilt in Group Separable) and Group was found to
be significant, F(5, 30) � 5.54, p � .001, whereas the interaction
between Dimension 2 and Group was not significant, F(5, 30) �
.17, p 	 .10. Still, both dimensions exerted strong control over the
pigeons’ pecking behavior.

What is more interesting for the present purposes is how the two
dimensions interacted with one another to produce changes in
mean response proportion and whether this interaction differed
between the groups. This matter is easier to visualize in the circle
plots that are shown in the right side of Figure 2.

The x- and y-axes in these plots represent the relevant stimulus
dimensions. The center of each circle is determined by the com-
bination of values of a stimulus along those two dimensions. The
size of each circle represents the mean response proportion to each
stimulus. The circles are also shaded differently depending on the
mean response proportion to each stimulus. White circles represent
a mean response proportion higher than .5, black circles represent
a mean response proportion lower than .2, and gray circles repre-
sent a mean response proportion between .2 and .5. The most
important aspect of these data is the relation between the level of
responding to those stimuli that are changed along one dimension
alone and the level of responding to those stimuli that are changed
along both dimensions.

The right side of Figure 2 shows that the mean unidimensional
generalization decrement was more precipitous in Group Integral
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than in Group Separable (excluding the target stimulus at Point
0/0, these data appear in the leftmost columns and bottommost
rows of each group’s circle plots). In Group Integral, the mean
response proportion fell below .5 very quickly for both dimensions
combined (7/10 scores were below .5); in Group Separable, the
mean response proportion fell more slowly below .5 for both
dimensions combined (only 3/10 scores were below .5). On the
other hand, the mean bidimensional generalization decrement ex-
hibited the opposite trend, being more precipitous in Group Sep-
arable than in Group Integral. Notice that in Group Separable the
mean response proportion dropped quickly below .2 for stimuli
changed in two dimensions (11/25 scores are below .2), whereas in
Group Integral the mean response proportion dropped more slowly
below .2 for stimuli changed in two dimensions (only 4/25 scores
are below .2). These disparities in the generalization gradients

produced by both groups were supported by a significant interac-
tion between Dimension 1, Dimension 2, and Group, F(25, 150) �
4.39, p � .001.

The main results of our critical model-fitting procedure are
shown in Table 1 for each individual pigeon as well as for the
pooled data of each group. The pooled data consisted of all of
the data from each bird in the group; these data do not represent the
means across birds. Thus, the best-fitting value of r for the pooled
data is constrained by each generalization data point from all four
birds.

The three bottom rows in Table 1 show the Root Mean Squared
Error (RMSE) values that were obtained for the best-fitting value
of parameter r and for the predictions generated by our model with
the City-Block metric (r � 1) and with the euclidean metric (r �
2). The RMSE values for the best-fitting solution tend to be low

Figure 2. Multidimensional generalization gradients plotting the mean response proportion to each of the
stimuli presented to Group Separable (top) and to Group Integral (bottom) in Experiment 1. The same
information is plotted as a surface plot at the left and as a circle plot at the right. See text for detailed description.

Table 1
Best-Fitting Values of Parameter r and RMSE Values, Both for the Individual Pigeon Data and for the Pooled Data of Each Group
in Experiment 1: Separable and Integral

Bird

Group separable

Group

Group integral

Group28W 39Y 60Y 8B 38B 89B 93W 51Y

Best-fitting r 0.82 0.61 0.54 0.62 0.64 7.39 2.22 1.01 1.47 1.72
RMSE

Best fit 0.09469 0.05426 0.05615 0.04766 0.07643 0.09295 0.12524 0.08987 0.09975 0.11007
City-Block 0.09956 0.07463 0.15644 0.10392 0.11264 0.15023 0.13144 0.08806 0.10071 0.12015
Euclidean 0.14137 0.08939 0.22608 0.16094 0.16201 0.10166 0.12285 0.11477 0.09861 0.10991
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and similar across pigeons, with a better fit to the data from Group
Separable than to the data from Group Integral. The same disparity
in fit was observed from the correlation between the observed
stimulus generalization values and the stimulus generalization
values predicted by our model fitted to the pooled group data. The
correlations between the predicted and observed data were strong
and significant for both groups according to Pearson’s product-
moment coefficient: 0.947 ( p � .0001) for Group Separable and
0.846 ( p � .0001) for Group Integral. In sum, our model repro-
duced the obtained generalization data in both groups with high
accuracy.

A possibly more interesting comparison may entail the best-
fitting values of parameter r, which are detailed in the first line of
Table 1. The obtained values for each individual pigeon in Group
Separable are all closer to a value of 1, indicative of the City-Block
metric, than to a value of 2, indicative of the euclidean metric; the
same is true for the value of r obtained from fitting the pooled data
of this group. This result is further confirmed by the fact that
RMSEs obtained from the predictions of the City-Block metric are
all lower than those obtained from the predictions of the euclidean
metric.

The results for Group Integral are different, with the best-fitting
group value of r closer to the euclidean metric of 2 than to the
City-Block metric of 1. A closer look at the data reveals that the
individual fits are not as straightforward as those in Group Sepa-
rable. Two of the birds (38B and 89B) show values of r that are
clearly closer to the euclidean metric than to the City-Block metric,
but this trend is not true for the other two birds which show values
that are either intermediate between the metrics (51Y) or closer to
the City-Block metric (93W). Analysis of the predictions obtained
with the City-Block and euclidean metrics reveals that the RMSEs
for three out of the four pigeons are lower with the euclidean
metric, with only Bird 93W exhibiting the opposite pattern. So,
although Bird 51Y shows a best-fitting value for parameter r that
is slightly closer to the City-Block metric, its data are better fit by
the euclidean model. The pooled data are also better fit by the
euclidean metric than by the City-Block metric.

A Wilcoxon’s rank sum test indicated that the best-fitting values
of parameter r were significantly different between the groups (z �
2.17, p � .05), reflecting the fact that, regardless of any individual
differences within each group, there was no overlap between the
scores of pigeons in Group Integral and pigeons in Group Sepa-
rable. These results are further depicted in Figure 3, which shows
the SSE profiles that were obtained for values of parameter r
ranging from 1 to 2, representing the City-Block and the euclidean
metrics, respectively. The SSE profiles of all four pigeons in
Group Separable rise with higher values of r, whereas they fall for
three of the four pigeons in Group Integral.

Discussion

The results of Experiment 1 suggest that different combination
rules may underlie multidimensional generalization to stimuli
which are varied along different physical dimensions. The best-
fitting values of parameter r for pigeons in Group Integral were
reliably higher than those for pigeons in Group Separable. This key
finding supports our main hypothesis that the particular dimen-
sions that are selected to build the stimulus set in a generalization
experiment may have a strong influence on the combination rules

used by animals, even when all other aspects of the experimental
method are kept constant. Thus, these results offer firm empirical
support for the assumption that only a flexible account, like the
spatial model that we have proposed here, can explain multidi-
mensional generalization to different sets of visual stimuli.

A second aspect of our proposal is that devising such a general
model using concepts from the spatial approach to human cogni-
tion is highly advantageous, because it opens the door to linking
different spatial metrics in the model to the central concepts of
integrality and separability of stimulus dimensions (Garner, 1974;
Shepard, 1991). Thus, we hypothesized that those stimuli that
varied along separable dimensions would produce generalization
gradients that better fit with the City-Block metric, whereas those
stimuli that varied along integral dimensions would produce gen-
eralization gradients that better fit with the euclidean metric.

The data from Group Separable, that was trained with stimuli
which varied along dimensions that human research suggests are
separable, were better fit by the City-Block metric in our model.

Figure 3. Lack of fit of the model’s predictions to the empirical data of
Experiment 1 (SSE) as a function of r values ranging from 1, representing
the City-Block metric, to 2, representing the euclidean metric. The data
from Groups Separable and Integral are presented in the top and bottom
portions, respectively.
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Although the best-fitting values of r observed in Table 1 were all
below 1, the fit provided by the City-Block metric was always
better than the fit provided by the euclidean metric. Furthermore,
best-fitting values lower than 1 have also been reported for sepa-
rable dimensions in the human literature (Dunn, 1983; Tversky &
Gati, 1982), a point to which we will return later (see General
Discussion).

Finally, we found some evidence to support our prediction that
the euclidean metric would better fit the generalization data from
Group Integral than the City-Block metric. This result was true for
three out of the four pigeons in Group Integral. However, the data
of one pigeon in this group was better fit by the City-Block metric
and a second pigeon produced results which might also be inter-
preted as providing only equivocal evidence for the euclidean over
the City-Block metric. Such findings are not unique to our study;
they have been reported in the human literature as well (Dunn,
1983; Ronacher & Bautz, 1985).

These final results and the small number of subjects that were
trained in Group Integral may raise doubts as to whether the
euclidean metric provides a suitably good description of general-
ization for stimuli varied along viewpoint. Perhaps training more
pigeons would produce the opposite pattern of results, with a
tendency for most birds to behave as predicted by the City-Block
metric. Furthermore, although the results for Group Separable
were expected on the basis of previous human research, the same
was not true for Group Integral. We are unaware of any prior
research attempting to test the integrality of viewpoint dimensions.
So, there are no other data, beyond those we collected in Experi-
ment 1, to support a solid conclusion about the best model to
describe multidimensional generalization for the dimensions of
rotation in depth.

We therefore decided to conduct a second experiment. The main
goals of Experiment 2 were to see whether the results of Group
Integral were reliable and to determine whether the euclidean
metric indeed provides a robust description of the generalization
data of most pigeons that are trained with images of an object that
is rotated in depth. Finally, to test the ability of our model to
describe the generalization data that are obtained with different
training procedures, Experiment 2 used a Forced-Choice task
instead of a Go/No-Go task to train the pigeons in the discrimi-
nation between target and nontarget stimuli.

Experiment 2

Method

Subjects and apparatus. The subjects were four pigeons.
One of the birds (39Y) had served in Group Separable of Exper-
iment 1, but it (and the other three birds) did not have any prior
experience with the particular stimuli and the Forced-Choice meth-
ods used in this experiment. The apparatus was the same as in
Experiment 1 and the stimuli were those previously used for Group
Integral (see the bottom panel of Figure 1).

Procedure. As in Experiment 1, different target stimuli were
randomly assigned to each pigeon from the same set of four
images.

All trials began with the presentation of a white square in the
center display area of the screen. A single peck anywhere within
the square display area led to the simultaneous presentation of the

target stimulus plus 1 of the 35 possible distracter stimuli. The
stimuli were displayed in two 6.7-cm square boxes vertically
centered in the screen and with their horizontal midpoint equally
spaced to the left and right of the screen midpoint. After a fixed
presentation time of 5 s, the pigeons had to make a single peck to
one of the two stimuli. The stimulus to which the response was
made remained on the screen for 2 s; the other stimulus disap-
peared. If the response was made to the target stimulus (S
), then
reinforcement consisting of 1 to 3 pellets was delivered and a fixed
intertrial interval of 5 s followed. If the response was made to the
S-, then the houselight darkened and a variable (5- to 30-s)
Timeout (TO) followed. After the TO elapsed, a correction trial
identical to the previous trial was given to the pigeon. Correction
trials were given until the correct response was made, but only the
first choice response of a trial was recorded and used in data
analyses.

Daily sessions of Discrimination Training were composed of 2
blocks of 70 trials each, for a total of 140 daily trials. The target
stimulus was presented along with each of the 35 possible dis-
tracter stimuli twice in each block, with the left-right location
counterbalanced. The order of presentation of trials within each
block was randomized.

Model fit. The data analysis included all of the sessions from
the start of training until the birds reached 90% correct responses
on 3 nonconsecutive days. The data from these sessions were fit to
the model described in Equation 3, using the procedure described
in Experiment 1. The specific scores that were used to fit the
model involved the proportion of trials, across all of the training
sessions, in which the pigeon erroneously pecked the nontarget
stimulus. This proportion was separately computed for each non-
target stimulus and then divided by .5 to transform it to a scale
ranging from 0 to 1. This final measure was then rescaled accord-
ing to the same linear transformation described in Experiment 1.
This experiment did not include any trials which presented the
target stimulus twice on the screen, because the data produced by
such trials could not be interpreted as “errors.” Such data were
simply replaced by a score of .5 for each of the pigeons, repre-
senting the probability of responding to each duplicate of the target
view across a large number of trials, which yielded a value of 1 in
the final generalization measure.

Results

It took the pigeons between 6 and 21 sessions to reach criterion.
Both versions of the pigeons’ stimulus generalization gradients—
surface plots and circle plots—are shown in Figure 4, depicted as
functions of rotational steps from the training view. It can be seen
that the response proportion fell as a function of changes across the
two dimensions and that conjoint changes in both dimensions
tended to produce a more marked generalization decrement than
did changes in either dimension alone. However, the shapes of the
gradients were not as regular as those obtained with the Go/No-Go
procedure in Experiment 1 and the level of generalized responding
was lower than that observed for Group Integral in that experi-
ment. Perhaps the opportunity to simultaneously compare the
target and nontarget stimuli was responsible for this lower level of
generalized responding.

These data were entered into a 6 (Rotation in x-axis) � 6
(Rotation in y-axis) ANOVA, which revealed a significant main
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effect of Rotation in the x-axis, F(5, 15) � 21.03, p � .0001, a
significant main effect of Rotation in the y-axis, F(5, 15) � 60.54,
p � .0001, and a significant interaction between these factors,
F(25, 75) � 8.14, p � .0001.

The relation between the observed generalization data and the
values that were predicted by our model was computed via a
Pearson’s product-moment coefficient. The result was a moder-
ately strong and significant correlation of 0.654 ( p � .0001). This
value was somewhat lower than the correlations that were obtained
in Experiment 1, possibly because of the lower level of generalized
responding that was supported by the choice task that was used in
the present experiment than the Go/No-Go procedure that was
used in Experiment 1.

Table 2 shows the key results of our model-fitting procedure for
each pigeon and for their pooled data. It can be seen that the
best-fitting value of r for all four of the pigeons was closer to a
value of 2, indicative of the euclidean metric, than to a value of 1,
indicative of the City-Block metric. Furthermore, the best-fitting
value of r for the pooled data was 2.14, very close to the perfect
euclidean metric of 2. These results were consistent with the
RMSE values that are shown in the lower part of the table, which
indicate that for each individual pigeon and for the pooled data, the
euclidean metric provided a better fit to the data than did the
City-Block metric.

Figure 5 provides different look at these fits, with SSE plotted
as a function of values of parameter r ranging from 1 to 2. The SSE
profiles of all four pigeons fall with higher values of parameter r.

Discussion

The results of Experiment 2 lend further support to the hypoth-
esis that stimulus generalization across different dimensions of
rotation in depth is better described by a spatial model using the
euclidean metric than by the City-Block metric. This result leads
us to conclude that the findings in Experiment 1 for Group Integral
were not due to chance, but instead reflect the particular combi-
nation rule that is fostered by the stimuli used to train those birds.
Only one of eight pigeons trained with these stimuli yielded
generalization data that were fit better by the City-Block metric,
suggesting that this subject was an outlier in an otherwise consis-
tent group of pigeons which behaved as predicted by the euclidean
model. Furthermore, these results show that it is possible for our
model to point consistently toward the same combination rule used
by pigeons when they are tested with a specific set of stimuli,
regardless of the discrimination task—Go/No-Go versus Forced-
Choice—that is deployed to gather the generalization data.

General Discussion

This article developed a quantitative model of multidimensional
stimulus generalization based on a set of concepts that were
derived from the geometrical approach to human cognition
(Nosofsky, 1992). Our model includes focal combination rules that
have been suggested in the literature (Blough, 1972; Butter, 1963;
Cross, 1965; Jones, 1962; Warren, 1954) ,and it links each of these

Figure 4. Multidimensional generalization gradients plotting the mean response proportion to each of the
stimuli presented to the pigeons in Experiment 2. The same information is plotted as a surface plot to the left
and as a circle plot to the right. See text for detailed description.

Table 2
Best-Fitting Values of Parameter r and Root Mean Squared Error (RMSE) Values, Both for the
Individual Pigeon Data and for the Pooled Data of the Integral Pigeons in Experiment 2

Bird 15W 24W 34R 39Y Group

Best-fitting r 1.86 1.53 1.88 4.24 2.14
RMSE

Best fit 0.14999 0.14372 0.16394 0.13374 0.14715
City-Block 0.15867 0.14503 0.17198 0.16091 0.15943
Euclidean 0.14704 0.14154 0.16068 0.13542 0.14647
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rules to different spatial metrics as well as to the twin concepts of
dimensional separability and integrality. The combination rule that
is adopted by the model depends on a single free parameter,
making the search for a suitable rule a matter of fitting this
parameter to data instead of looking for the best rule among a
handful of possibilities by a trial-and-error process, as in previous
explorations of this problem (e.g., Blough, 1972; Jones, 1962).

In the first experiment, generalized responding to stimuli which
varied along dimensions that are believed to be separable (circle
size and line tilt) was better described by the City-Block metric,
just as in human studies using MDS (Hyman & Well, 1967;
Shepard, 1991). On the other hand, generalized responding to
stimuli which varied along intuitively integral dimensions (orthog-
onal dimensions of rotation in depth) was better described by the
euclidean metric in three of four subjects, just the result found with
other sets of dimensions in human studies (see Shepard, 1991).
The latter conclusion was confirmed by the results of Experiment
2. The good fit of our model to the generalization data that we
obtained from very different stimuli and dimensions coupled with
the fact that our results mirrored previous findings from human
research suggest that the assumptions underlying the model are
valid. So, despite obvious anatomical disparities between avian
and mammalian visual and nervous systems, the study of dimen-
sional interaction can lead to similar conclusions for both classes
of organisms.

As well, some aspects of our generalization data warrant further
discussion, because they might be deemed to be problematic for
our interpretation of the results. The most obvious issue is that, in
Experiment 1, the City-Block metric better described the data of
one pigeon in Group Integral than did the euclidean metric. This
same pattern of results has been reported in human research as
well, where individual similarity judgments fit well with a variety
of metrics regardless of the specific dimensions that were manip-

ulated to create the stimulus set (Dunn, 1983; Ronacher & Bautz,
1985). These studies found that a minority of subjects trained with
integral dimensions generated data that were better fit by the
City-Block metric.

The relation between integrality and the euclidean metric, on the
one hand, and between separability and the City-Block metric, on
the other, appears to be far from perfect; that relation may only
reflect a general tendency to deploy one form of processing visual
information over another depending on the dimensions along
which the stimuli vary. As Shepard (1991, p. 61) concluded from
his review of the human literature: “pure integrality is more or less
approximated, if perhaps never strictly achieved. Some directions
through the stimulus space [. . .], although not fully separable, may
always be somewhat more psychologically salient [. . .] [I]ntegral-
ity and separability may define a continuum rather than a dichot-
omy.” Furthermore, several other factors, such as individual dif-
ferences or task demands, could also affect the way in which
stimulus dimensions interact (e.g., Foard & Kemler, 1984;
Ronacher, 1984).

Nonetheless, despite the fact that one pigeon in Group Integral
may have used a combination rule unlike that used by the other
pigeons, the best-fitting value of parameter r for every pigeon in
Group Separable was lower than the value of r for every pigeon in
Group Integral, thus attesting to the strong effects that our stimulus
manipulations had on pigeons’ discrimination performance in Ex-
periment 1. This is evidence that the combination rules that are
used in multidimensional generalization vary in a predictable way
depending on stimulus factors, even when training conditions are
kept constant. Only a flexible model like the one that we presented
here can capture such variability.

As to the possible effect of task demands on the pigeons’
behavior, note that we used two different discrimination tasks for
obtaining stimulus generalization gradients, in which only re-
sponses to the target stimulus were reinforced; responses to all
other nontarget stimuli were never reinforced during discrimina-
tion training. Under both of these conditions, response efficiency
can be maximized by reducing the number of nontarget responses.
This reduction in responding would be better accomplished if
pigeons were to separately evaluate changes in both dimensions
than if they were to integrally evaluate stimulus similarity. Why?

The City-Block metric always locates two stimuli that are
changed in more than one dimension at a greater distance from one
another than does the euclidean metric. In other words, the City-
Block metric predicts greater discriminability between stimuli,
which translates into less generalized responding between them.
Under reinforcement contingencies that thus ought to have favored
lower levels of generalization between the target and nontarget
stimuli, it is surprising that, in Experiment 1, the data for most of
the pigeons in Group Integral were better fit by the euclidean
metric than by the City-Block metric (see Table 1 and the bottom
panel of Figure 3), and that the same was true for all of the pigeons
in Experiment 2 (Table 2 and Figure 5); this observation is con-
sistent with the notion that these birds could not separately attend
to changes in the two manipulated dimensions.

A related aspect of our results that merits further consideration
is the fact that the best-fitting values for pigeons in Group Sepa-
rable in Experiment 1 disclosed systematic deviations from the
City-Block metric. Specifically, these values of r were all lower
than 1, pointing to violations of the triangle inequality axiom of

Figure 5. Lack of fit of the model’s predictions to the empirical data of
Experiment 2 (SSE) as a function of r values ranging from 1, representing
the City-Block metric, to 2, representing the euclidean metric.
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metric spaces and suggesting that the data could better be de-
scribed by a nonmetric model (see Tversky & Gati, 1982). Con-
cretely, this result suggests that the observed generalization dec-
rements after changes in two dimensions were larger than those
predicted by the City-Block metric.

This result too has been reported in human studies involving the
dimensions of circle size and line tilt (Dunn, 1983). Furthermore,
this may be yet another case in which the specific task that is used
to gather the stimulus generalization data could have exaggerated
the steepness of the stimulus generalization gradient for combined
changes along the two dimensions. As suggested above, the con-
tingencies of reinforcement favored the pigeons’ adopting a strat-
egy using the information about changes in both dimensions in a
way that encourages lower levels of stimulus generalization. Fu-
ture experiments, gathering stimulus generalization data via other
procedures, might help to resolve this issue.

A final concern is the fact that the best-fitting values of param-
eter r in Experiment 1 showed disparities between groups not only
in their magnitude, but also in their variability. The values of r
obtained for pigeons in Group Integral were not only larger, but
they were also more variable than those obtained in Group Sepa-
rable.

Here, it should be noted that two Minkowski metrics with a
constant disparity in exponent translate into more similar spaces as
their exponents increase. Assuming that the pigeons’ confusion
errors include random variations, a constant amount of variation in
these values should lead to a broader distribution of exponent
values for larger exponents, because shifting a point at a particular
distance in psychological space requires a larger shift in the
exponent (Ronacher & Bautz, 1985). Thus, this result can be
explained as a consequence of using a model based on the
Minkowski metric, although differences in the stimulus sets that
were given to each group could also underlie the between-groups
disparities in individual variability and the fit of the model to the
generalization data.

To conclude, we wish to observe that the study of dimensional
interaction in information processing may yield important insights
into the processes underlying visual object recognition and cate-
gorization. The study of multidimensional stimulus generalization,
in general, and the use of spatial models to investigate this matter,
in particular, have not been popular in the animal behavior liter-
ature. At least one reason for this neglect might be the difficulty of
obtaining sufficient generalization data to deploy MDS techniques
using traditional animal discrimination learning tasks. But, the use
of scaling methods is only one approach to the problem of repre-
senting similarity data through spatial models.

A different approach assumes that the component dimensions of
the model are known and it infers the combinatorial rule or spatial
metric that better describes the way in which the subjects actually
use these dimensions (Hyman & Well, 1967). The work presented
here illustrates how this second approach can be successfully
applied to the study of multidimensional stimulus generalization
gradients, which are easily obtainable using common animal dis-
crimination learning tasks.
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