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Abstract

Multidimensional signal detection theory is a multivariate extension of signal detection
theory that makes two fundamental assumptions, namely that every mental state is noisy
and that every action requires a decision. The most widely studied version is known as
general recognition theory (GRT). General recognition theory assumes that the percept on
each trial can be modeled as a random sample from a multivariate probability distribution
defined over the perceptual space. Decision bounds divide this space into regions that are
each associated with a response alternative. General recognition theory rigorously defines
and tests a number of important perceptual and cognitive conditions, including perceptual
and decisional separability and perceptual independence. General recognition theory has
been used to analyze data from identification experiments in two ways: (1) fitting and
comparing models that make different assumptions about perceptual and decisional
processing, and (2) testing assumptions by computing summary statistics and checking
whether these satisfy certain conditions. Much has been learned recently about the neural
networks that mediate the perceptual and decisional processing modeled by GRT, and this
knowledge can be used to improve the design of experiments where a GRT analysis is
anticipated.

Key Words: signal detection theory, general recognition theory, perceptual separability,
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Introduction
Signal detection theory revolutionized psy-

chophysics in two different ways. First, it in-
troduced the idea that trial-by-trial variability in
sensation can significantly affect a subject’s perfor-
mance. And second, it introduced the field to the
then-radical idea that every psychophysical response
requires a decision from the subject, even when
the task is as simple as detecting a signal in the
presence of noise. Of course, signal detection theory
proved to be wildly successful and both of these
assumptions are now routinely accepted without
question in virtually all areas of psychology.

The mathematical basis of signal detection
theory is rooted in statistical decision theory, which

itself has a history that dates back at least several
centuries. The insight of signal detection theorists
was that this model of statistical decisions was also
a good model of sensory decisions. The first signal
detection theory publication appeared in 1954
(Peterson, Birdsall, & Fox, 1954), but the theory
did not really become widely known in psychology
until the seminal article of Swets, Tanner, and
Birdsall appeared in Psychological Review in 1961.
From then until 1986, almost all applications of
signal detection theory assumed only one sen-
sory dimension (Tanner, 1956, is the principal
exception). In almost all cases, this dimension
was meant to represent sensory magnitude. For
a detailed description of this standard univariate
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theory, see the excellent texts of either Macmillan
and Creelman (2005) or Wickens (2002). This
chapter describes multivariate generalizations of
signal detection theory.

Multidimensional signal detection theory is a
multivariate extension of signal detection to cases in
which there is more than one perceptual dimension.
It has all the advantages of univariate signal
detection theory (i.e., it separates perceptual and
decision processes) but it also offers the best existing
method for examining interactions among percep-
tual dimensions (or components). The most widely
studied version of multidimensional signal detec-
tion theory is known as general recognition theory
(GRT; Ashby & Townsend, 1986). Since its incep-
tion, more than 350 articles have applied GRT to
a wide variety of phenomena, including categoriza-
tion (e.g., Ashby & Gott, 1988; Maddox & Ashby,
1993), similarity judgment (Ashby & Perrin, 1988),
face perception (Blaha, Silbert, & Townsend, 2011;
Thomas, 2001; Wenger & Ingvalson, 2002), recog-
nition and source memory (Banks, 2000; Rotello,
Macmillan, & Reeder, 2004), source monitoring
(DeCarlo, 2003), attention (Maddox, Ashby, &
Waldron, 2002), object recognition (Cohen, 1997;
Demeyer, Zaenen, & Wagemans, 2007), per-
ception/action interactions (Amazeen & DaSilva,
2005), auditory and speech perception (Silbert,
2012; Silbert, Townsend, & Lentz, 2009), haptic
perception (Giordano et al., 2012; Louw, Kappers,
& Koenderink, 2002), and the perception of sexual
interest (Farris, Viken, & Treat, 2010).

Extending signal detection theory to multiple
dimensions might seem like a straightforward
mathematical exercise, but, in fact, several new
conceptual problems must be solved. First, with
more than one dimension, it becomes necessary
to model interactions (or the lack thereof ) among
those dimensions. During the 1960s and 1970s,
a great many terms were coined that attempted
to describe perceptual interactions among separate
stimulus components. None of these, however, were
rigorously defined or had any underlying theoretical
foundation. Included in this list were perceptual
independence, separability, integrality, performance
parity, and sampling independence. Thus, to be
useful as a model of perception, any multivariate
extension of signal detection theory needed to
provide theoretical interpretations of these terms
and show rigorously how they were related to one
another.

Second, the problem of how to model decision
processes when the perceptual space is multidi-
mensional is far more difficult than when there
is only one sensory dimension. A standard signal-
detection-theory lecture is to show that almost any
decision strategy is mathematically equivalent to
setting a criterion on the single sensory dimension,
then giving one response if the sensory value falls
on one side of this criterion, and the other response
if the sensory value falls on the other side. For
example, in the normal, equal-variance model, this
is true regardless of whether subjects base their
decision on sensory magnitude or on likelihood
ratio. A straightforward generalization of this model
to two perceptual dimensions divides the perceptual
plane into two response regions. One response is
given if the percept falls in the first region and the
other response is given if the percept falls in the
second region. The obvious problem is that, unlike
a line, there are an infinite number of ways to divide
a plane into two regions. How do we know which
of these has the most empirical validity?

The solution to the first of these two problems—
that is, the sensory problem—was proposed by
Ashby and Townsend (1986) in the article that
first developed GRT. The GRT model of sensory
interactions has been embellished during the past
25 years, but the core concepts introduced by Ashby
and Townsend (1986) remain unchanged (i.e., per-
ceptual independence, perceptual separability). In
contrast, the decision problem has been much more
difficult. Ashby and Townsend (1986) proposed
some candidate decision processes, but at that time
they were largely without empirical support. In the
ensuing 25 years, however, hundreds of studies
have attacked this problem, and today much is
known about human decision processes in percep-
tual and cognitive tasks that use multidimensional
perceptual stimuli.

Box 1 Notation
AiBj = stimulus constructed by setting compo-
nent A to level i and component B to level j

aibj = response in an identification experiment
signaling that component A is at level i and
component B is at level j

X1 = perceived value of component A

X2 = perceived value of component B
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Box 1 Continued
fij(x1,x2) = joint likelihood that the perceived
value of component A is x1 and the perceived
value of component B is x2 on a trial when the
presented stimulus is AiBj

gij(x1) = marginal pdf of component A on trials
when stimulus AiBj is presented

rij = frequency with which the subject re-
sponded Rj on trials when stimulus Si was
presented

P(Rj|Si) = probability that response Rj is given
on a trial when stimulus Si is presented

General Recognition Theory
General recognition theory (see the Glossary for

key concepts related to GRT) can be applied to
virtually any task. The most common applications,
however, are to tasks in which the stimuli vary
on two stimulus components or dimensions. As
an example, consider an experiment in which
participants are asked to categorize or identify faces
that vary across trials on gender and age. Suppose
there are four stimuli (i.e., faces) that are created by
factorially combining two levels of each dimension.
In this case we could denote the two levels of the
gender dimension by A1 (male) and A2 (female) and
the two levels of the age dimension by B1 (teen) and
B2 (adult). Then the four faces are denoted as A1B1
(male teen), A1B2 (male adult), A2B1 (female teen),
and A2B2 (female adult).

As with signal detection theory, a fundamental
assumption of GRT is that all perceptual systems
are inherently noisy. There is noise both in the
stimulus (e.g., photon noise) and in the neural
systems that determine its sensory representation
(Ashby & Lee, 1993). Even so, the perceived value
on each sensory dimension will tend to increase as
the level of the relevant stimulus component in-
creases. In other words, the distribution of percepts
will change when the stimulus changes. So, for
example, each time the A1B1 face is presented, its
perceived age and maleness will tend to be slightly
different.

General recognition theory models the sensory
or perceptual effects of a stimulus AiBj via the joint
probability density function (pdf ) fij(x1, x2) (see
Box 1 for a description of the notation used in this
article). On any particular trial when stimulus AiBj
is presented, GRT assumes that the subject’s percept
can be modeled as a random sample from this

joint pdf. Any such sample defines an ordered pair
(x1, x2), the entries of which fix the perceived value
of the stimulus on the two sensory dimensions.
General recognition theory assumes that the subject
uses these values to select a response.

In GRT, the relationship of the joint pdf to the
marginal pdfs plays a critical role in determining
whether the stimulus dimensions are perceptually
integral or separable. The marginal pdf gij(x1)
simply describes the likelihoods of all possible
sensory values of X 1. Note that the marginal pdfs
are identical to the one-dimensional pdfs of classical
signal detection theory.

Component A is perceptually separable from
component B if the subject’s perception of A does
not change when the level of B is varied. For
example, age is perceptually separable from gender
if the perceived age of the adult in our face
experiment is the same for the male adult as for
the female adult, and if a similar invariance holds
for the perceived age of the teen. More formally, in
an experiment with the four stimuli, A1B1, A1B2,
A2B1, and A2B2, component A is perceptually
separable from B if and only if

g11(x1)= g12(x1) and g21(x1)= g22(x1)

for all values of x1. (1)

Similarly, component B is perceptually separable
from A if and only if

g11(x2)= g21(x2) and g12(x2)= g22(x2), (2)

for all values of x2. If perceptual separability fails
then A and B are said to be perceptually integral.
Note that this definition is purely perceptual since
it places no constraints on any decision processes.

Another purely perceptual phenomenon is per-
ceptual independence. According to GRT, compo-
nents A and B are perceived independently in
stimulus AiBj if and only if the perceptual value
of component A is statistically independent of
the perceptual value of component B on AiBj
trials. More specifically, A and B are perceived
independently in stimulus AiBj if and only if

f ij(x1,x2)= gij(x1) gij(x2) (3)

for all values of x1 and x2. If perceptual inde-
pendence is violated, then components A and B
are perceived dependently. Note that perceptual
independence is a property of a single stimulus,
whereas perceptual separability is a property of
groups of stimuli.

A third important construct from GRT is deci-
sional separability. In our hypothetical experiment
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with stimuli A1B1, A1B2, A2B1, and A2B2, and
two perceptual dimensions X 1 and X 2, decisional
separability holds on dimension X 1 (for example),
if the subject’s decision about whether stimulus
component A is at level 1 or 2 depends only on
the perceived value on dimension X 1. A decision
bound is a line or curve that separates regions of the
perceptual space that elicit different responses. The
only types of decision bounds that satisfy decisional
separability are vertical and horizontal lines.

The Multivariate Normal Model
So far we have made no assumptions about

the form of the joint or marginal pdfs. Our
only assumption has been that there exists some
probability distribution associated with each stim-
ulus and that these distributions are all embedded
in some Euclidean space (e.g., with orthogonal
dimensions). There have been some efforts to
extend GRT to more general geometric spaces
(i.e., Riemannian manifolds; Townsend, Aisbett,
Assadi, & Busemeyer, 2006; Townsend & Spencer-
Smith, 2004), but much more common is to
add more restrictions to the original version of
GRT, not fewer. For example, some applications
of GRT have been distribution free (e.g., Ashby
& Maddox, 1994; Ashby & Townsend, 1986),
but most have assumed that the percepts are
multivariate normally distributed. The multivariate
normal distribution includes two assumptions.
First, the marginal distributions are all normal.
Second, the only possible dependencies are pairwise
linear relationships. Thus, in multivariate normal
distributions, uncorrelated random variables are
statistically independent.

A hypothetical example of a GRT model that
assumes multivariate normal distributions is shown
in Figure 2.1. The ellipses shown there are contours
of equal likelihood; that is, all points on the same
ellipse are equally likely to be sampled from the
underlying distribution. The contours of equal
likelihood also describe the shape a scatterplot of
points would take if they were random samples
from the underlying distribution. Geometrically,
the contours are created by taking a slice through
the distribution parallel to the perceptual plane and
looking down at the result from above. Contours
of equal likelihood in multivariate normal distribu-
tions are always circles or ellipses. Bivariate normal
distributions, like those depicted in Figure 2.1 are
each characterized by five parameters: a mean on
each dimension, a variance on each dimension, and
a covariance or correlation between the values on

the two dimensions. These are typically catalogued
in a mean vector and a variance-covariance matrix.
For example, consider a bivariate normal distribu-
tion with joint density function f (x1,x2). Then the
mean vector would equal

µ=
[

μ1
μ2

]
(4)

and the variance-covariance matrix would equal

� =
[

σ 2
1 cov12

cov21 σ 2
2

]
(5)

where cov12 is the covariance between the values on
the two dimensions (i.e., note that the correlation
coefficient is the standardized covariance—that is,
the correlation ρ12 = cov12

σ1σ2
).

The multivariate normal distribution has an-
other important property. Consider an identifica-
tion task with only two stimuli and suppose the
perceptual effects associated with the presentation
of each stimulus can be modeled as a multivariate
normal distribution. Then it is straightforward to
show that the decision boundary that maximizes
accuracy is always linear or quadratic (e.g., Ashby,
1992). The optimal boundary is linear if the
two perceptual distributions have equal variance-
covariance matrices (and so the contours of equal
likelihood have the same shape and are just trans-
lations of each other) and the optimal boundary is
quadratic if the two variance-covariance matrices are
unequal. Thus, in the Gaussian version of GRT, the
only decision bounds that are typically considered
are either linear or quadratic.

In Figure 2.1, note that perceptual independence
holds for all stimuli except A2B2. This can be
seen in the contours of equal likelihood. Note
that the major and minor axes of the ellipses that
define the contours of equal likelihood for stimuli
A1B1, A1B2, and A2B1 are all parallel to the
two perceptual dimensions. Thus, a scatterplot of
samples from each of these distributions would be
characterized by zero correlation and, therefore,
statistical independence (i.e., in the special Gaussian
case). However, the major and minor axes of the
A2B2 distribution are tilted, reflecting a positive
correlation and hence a violation of perceptual
independence.

Next, note in Figure 2.1 that stimulus compo-
nent A is perceptually separable from stimulus com-
ponent B, but B is not perceptually separable from
A. To see this, note that the marginal distributions
for stimulus component A are the same, regardless
of the level of component B [i.e., g11(x1) =
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f12(x1,x2)

f11(x1,x2)

g11(x1) = g12(x1)

X1 Xc1

X c
2

g22(x2)

g12(x2)

g21(x2)

g11(x2)

X 2

g21(x1) = g22(x1)

f21(x1,x2)

f22(x1,x2)

Respond A2B2

Respond A2B1

Respond A1B2

Respond A1B1

Fig. 2.1 Contours of equal likelihood, decision bounds, and
marginal perceptual distributions from a hypothetical multi-
variate normal GRT model that describes the results of an
identification experiment with four stimuli that were constructed
by factorially combining two levels of two stimulus dimensions.

g12(x1) and g21(x1) = g22(x1), for all values of x1].
Thus, the subject’s perception of component A does
not depend on the level of B and, therefore, stimu-
lus component A is perceptually separable from B.
On the other hand, note that the subject’s percep-
tion of component B does change when the level
of component A changes [i.e., g11(x1) �= g21(x1)
and g12(x1) �= g22(x1) for most values of x1]. In
particular, when A changes from level 1 to level 2
the subject’s mean perceived value of each level of
component B increases. Thus, the perception of
component B depends on the level of component
A and therefore B is not perceptually separable
from A.

Finally, note that decisional separability holds
on dimension 1 but not on dimension 2. On
dimension 1 the decision bound is vertical. Thus,
the subject has adopted the following decision rule:

Component A is at level 2 if x1 > X c1; otherwise
component A is at level 1.

Where X c1 is the criterion on dimension 1
(i.e., the x1 intercept of the vertical decision
bound). Thus, the subject’s decision about whether
component A is at level 1 or 2 does not depend on
the perceived value of component B. So component
A is decisionally separable from component B. On
the other hand, the decision bound on dimension
x2 is not horizontal, so the criterion used to judge
whether component B is at level 1 or 2 changes with
the perceived value of component A (at least for

larger perceived values of A). As a result, component
B is not decisionally separable from component A.

Applying GRT to Data
The most common applications of GRT are

to data collected in an identification experiment
like the one modeled in Figure 2.1. The key data
from such experiments are collected in a confusion
matrix, which contains a row for every stimulus
and a column for every response (Table 2.1 displays
an example of a confusion matrix, which will be
discussed and analyzed later). The entry in row i
and column j lists the number of trials on which
stimulus Si was presented and the subject gave
response Rj. Thus, the entries on the main diagonal
give the frequencies of all correct responses and the
off-diagonal entries describe the various errors (or
confusions). Note that each row sum equals the
total number of stimulus presentations of that type.
So if each stimulus is presented 100 times then
the sum of all entries in each row will equal 100.
This means that there is one constraint per row, so
an n × n confusion matrix will have n × (n – 1)
degrees of freedom.

General recognition theory has been used to
analyze data from confusion matrices in two
different ways. One is to fit the model to the
entire confusion matrix. In this method, a GRT
model is constructed with specific numerical values
of all of its parameters and a predicted confusion
matrix is computed. Next, values of each parameter
are found that make the predicted matrix as close
as possible to the empirical confusion matrix. To
test various assumptions about perceptual and deci-
sional processing—for example, whether perceptual
independence holds—a version of the model that
assumes perceptual independence is fit to the data
as well as a version that makes no assumptions
about perceptual independence. This latter version
contains the former version as a special case (i.e.,
in which all covariance parameters are set to zero),
so it can never fit worse. After fitting these two
models, we assume that perceptual independence
is violated if the more general model fits sig-
nificantly better than the more restricted model
that assumes perceptual independence. The other
method for using GRT to test assumptions about
perceptual processing, which is arguably more
popular, is to compute certain summary statistics
from the empirical confusion matrix and then
to check whether these satisfy certain conditions
that are characteristic of perceptual separability or
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independence. Because these two methods are so
different, we will discuss each in turn.

It is important to note however, that regard-
less of which method is used, there are certain
nonidentifiabilities in the GRT model that could
limit the conclusions that are possible to draw from
any such analyses (e.g., Menneer, Wenger, & Blaha,
2010; Silbert & Thomas, 2013). The problems
are most severe when GRT is applied to 2 × 2
identification data (i.e., when the stimuli are A1B1,
A1B2, A2B1, and A2B2). For example, Silbert and
Thomas (2013) showed that in 2 × 2 applications
where there are two linear decision bounds that
do not satisfy decisional separability, there always
exists an alternative model that makes the exact
same empirical predictions and satisfies decisional
separability (and these two models are related by an
affine transformation). Thus, decisional separability
is not testable with standard applications of GRT to
2 × 2 identification data (nor can the slopes of the
decision bounds be uniquely estimated). For several
reasons, however, these nonidentifiabilities are not
catastrophic.

First, the problems don’t generally exist with
3 × 3 or larger identification tasks. In the 3 × 3
case the GRT model with linear bounds requires
at least 4 decision bounds to divide the perceptual
space into 9 response regions (e.g., in a tic-tac-toe
configuration). Typically, two will have a generally
vertical orientation and two will have a generally
horizontal orientation. In this case, there is no
affine transformation that guarantees decisional
separability except in the special case where the
two vertical-tending bounds are parallel and the
two horizontal-tending bounds are parallel (because
parallel lines remain parallel after affine transfor-
mations). Thus, in 3 × 3 (or higher) designs,
decisional separability is typically identifiable and
testable.

Second, there are simple experimental manip-
ulations that can be added to the basic 2 ×
2 identification experiment to test for decisional
separability. In particular, switching the locations
of the response keys is known to interfere with
performance if decisional separability fails but not
if decisional separability holds (Maddox, Glass,
O’Brien, Filoteo, & Ashby, 2010; for more infor-
mation on this, see the section later entitled “Neural
Implementations of GRT”). Thus, one could add
100 extra trials to the end of a 2 × 2 identi-
fication experiment where the response key loca-
tions are randomly interchanged (and participants
are informed of this change). If accuracy drops

significantly during this period, then decisional
separability can be rejected, whereas if accuracy is
unaffected then decisional separability is supported.

Third, one could analyze the 2 × 2 data
using the newly developed GRT model with in-
dividual differences (GRT-wIND; Soto, Vucovich,
Musgrave, & Ashby, in press), which was patterned
after the INDSCAL model of multidimensional
scaling (Carroll & Chang, 1970). GRT-wIND is fit
to the data from all individuals simultaneously. All
participants are assumed to share the same group
perceptual distributions, but different participants
are allowed different linear bounds and they are
assumed to allocate different amounts of attention
to each perceptual dimension. The model does not
suffer from the identifiability problems identified
by Silbert and Thomas (2013), even in the 2 × 2
case, because with different linear bounds for
each participant there is no affine transformation
that simultaneously makes all these bounds satisfy
decisional separability.

Fitting the GRT Model to
Identification Data
computing the likelihood function

When the full GRT model is fit to identification
data, the best-fitting values of all free parameters
must be found. Ideally, this is done via the method
of maximum likelihood—that is, numerical values
of all parameters are found that maximize the
likelihood of the data given the model. Let S1, S2,
. . . , Sn denote the n stimuli in an identification
experiment and let R1, R2, . . . , Rn denote the n
responses. Let rij denote the frequency with which
the subject responded Rj on trials when stimulus Si
was presented. Thus, rij is the entry in row i and
column j of the confusion matrix. Note that the rij
are random variables. The entries in each row have a
multinomial distribution. In particular, if P(Rj|Si)
is the true probability that response Rj is given
on trials when stimulus Si is presented, then the
probability of observing the response frequencies
ri1, ri2, . . . , rin in row i equals

ni!

ri1!ri2! · · · rin!
P(R1 |Si)ri1P(R2 |Si)ri2 · · ·P(Rn |Si)rin

(6)

where ni is the total number of times that
stimulus Si was presented during the course of the
experiment. The probability or joint likelihood of
observing the entire confusion matrix is the product
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of the probabilities of observing each row; that is,

L=
n∏

i=1

ni

�
n
j=1 rij

n∏
j=1

P(Rj |Si)
rij (7)

General recognition theory models predict that
P(Rj|Si) has a specific form. Specifically, they
predict that P(Rj|Si) is the volume in the Rj
response region under the multivariate distribution
of perceptual effects elicited when stimulus Si is pre-
sented. This requires computing a multiple integral.
The maximum likelihood estimators of the GRT
model parameters are those numerical values of each
parameter that maximize L. Note that the first term
in Eq. 7 does not depend on the values of any
model parameters. Rather it only depends on the
data. Thus, the parameter values that maximize the
second term also maximize the whole expression.
For this reason, the first term can be ignored during
the maximization process. Another common prac-
tice is to take logs of both sides of Eq. 7. Parameter
values that maximize L will also maximize any
monotonic function of L (and log is a monotonic
transformation). So, the standard approach is to
find values of the free parameters that maximize

n∑
i=1

n∑
j=1

rij logP(Rj |Si) (8)

estimating the parameters
In the case of the multivariate normal model,

the predicted probability P(Rj|Si) in Eq. 8 equals
the volume under the multivariate normal pdf
that describes the subject’s perceptual experiences
on trials when stimulus Si is presented over the
response region associated with response Rj. To
estimate the best-fitting parameter values using a
standard minimization routine, such integrals must
be evaluated many times. If decisional separability is
assumed, then the problem simplifies considerably.
For example, under these conditions, Wickens
(1992) derived the first and second derivatives
necessary to quickly estimate parameters of the
model using the Newton-Raphson method. Other
methods must be used for more general models that
do not assume decisional separability. Ennis and
Ashby (2003) proposed an efficient algorithm for
evaluating the integrals that arise when fitting any
GRT model. This algorithm allows the parameters
of virtually any GRT model to be estimated via
standard minimization software. The remainder of
this section describes this method.

The left side of Figure 2.2 shows a contour
of equal likelihood from the bivariate normal

distribution that describes the perceptual effects of
stimulus Si, and the solid lines denote two possible
decision bounds in this hypothetical task. In Figure
2.2 the bounds are linear, but the method works
for any number of bounds that have any parametric
form. The shaded region is the Rj response region.
Thus, according to GRT, computing P(Rj|Si) is
equivalent to computing the volume under the Si
perceptual distribution in the Rj response region.
This volume is indicated by the shaded region in
the figure. First note that any linear bound can be
written in discriminant function form as

h(x1,x2)= h(x)= b′x+ c= 0 (9)

where (in the bivariate case) x and b′ are the vectors

x=
[

x1
x2

]
and b′ = [

b1 b2
]

and c is a constant. The discriminant function form
of any decision bound has the property that positive
values are obtained if any point on one side of the
bound is inserted into the function, and negative
values are obtained if any point on the opposite
side is inserted. So, for example, in Figure 2.2, the
constants b1, b2, and c can be selected so that h1(x)
> 0 for any point x above the h1 bound and h1(x)
< 0 for any point below the bound. Similarly, for
the h2 bound, the constants can be selected so that
h2(x) > 0 for any point to the right of the bound
and h2(x) < 0 for any point to the left. Note that
under these conditions, the Rj response region is
defined as the set of all x such that h1(x) > 0 and
h2(x) > 0. Therefore, if we denote the multivariate
normal (mvn) pdf for stimulus Si as mvn(µi,i),
then

P(Rj |Si )=
∫∫

h1(x)> 0;
h2(x) > 0

mvn(µi ,�i)dx1dx2 (10)

Ennis and Ashby (2003) showed how to quickly
approximate integrals of this type. The basic idea is
to transform the problem using a multivariate form
of the well-known z transformation. Ennis and
Ashby proposed using the Cholesky transformation.
Any random vector x that has a multivariate normal
distribution can always be rewritten as

x= Pz+µ, (11)

where µ is the mean vector of x, z is a random
vector with a multivariate z distribution (i.e., a mul-
tivariate normal distribution with mean vector 0
and variance-covariance matrix equal to the identity
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Cholesky

Cholesky

x1

z1

z2

h1(x1, x2) = 0
h2(x1, x2) = 0

h1*(z1, z2) = 0

h2*(z1, z2) = 0

x2

Respond Rj

Respond Rj

Fig. 2.2 Schematic illustration of how numerical integration is performed in the multivariate normal GRT model via Cholesky
factorization.

matrix I), and P is a lower triangular matrix such
that PP′ = � (i.e., the variance-covariance matrix
of x). If x is bivariate normal then

P=
⎡
⎣ σ1 0

cov12
σ1

√
σ 2

2
− cov2

12
σ 2

1

⎤
⎦ (12)

The Cholesky transformation is linear (see Eq. 11),
so linear bounds in x space are transformed to linear
bounds in z space. In particular,

hk(x)= b′x+ c= 0

becomes

hk(Pz+µ)= b′(Pz+µ)+ c= 0

or equivalently

hk
∗(z)= (b′P)z+ (b′µ+ c)= 0 (13)

Thus, in this way we can transform the Eq. 10
integral to

P(Rj |Si) =
∫∫

h1(x)> 0;
h2(x) > 0

mvn(µi ,�i)dx1dx2

=
∫∫

h∗1(z)> 0;
h∗2(z) > 0

mvn(0, I)dz1dz2 (14)

The right and left panels of Figure 2.2 illustrate
these two integrals. The key to evaluating the
second of these integrals quickly is to preload z-
values that are centered in equal area intervals. In
Figure 2.2 each gray point in the right panel has
a z1 coordinate that is the center1 of an interval
with area 0.10 under the z distribution (since there

are 10 points). Taking the Cartesian product of
these 10 points produces a table of 100 ordered
pairs (z1, z2) that are each the center of a rectangle
with volume 0.01 (i.e., 0.10 × 0.10) under the
bivariate z distribution. Given such a table, the
Eq. 14 integral is evaluated by stepping through all
(z1, z2) points in the table. Each point is substituted
into Eq. 13 for k = 1 and 2 and the signs of
h1
∗(z1, z2) and h2

∗(z1, z2) are determined. If
h1
∗(z1, z2) > 0 and h2

∗(z1, z2) > 0 then the
Eq. 14 integral is incremented by 0.01. If either
or both of these signs are negative, then the value
of the integral is unchanged. So the value of the
integral is approximately equal to the number of
(z1, z2) points that are in the Rj response region
divided by the total number of (z1, z2) points in
the table. Figure 2.2 shows a 10 × 10 grid of (z1,
z2) points, but better results can be expected from a
grid with higher resolution. We have had success
with a 100 × 100 grid, which should produce
approximations to the integral that are accurate to
within 0.0001 (Ashby, Waldron, Lee, & Berkman,
2001).

evaluating goodness of fit
As indicated before, one popular method for

testing an assumption about perceptual or deci-
sional processing is to fit two versions of a GRT
model to the data using the procedures outlined in
this section. In the first, restricted version of the
model, a number of parameters are set to values that
reflect the assumption being tested. For example,
fixing all correlations to zero would test perceptual
independence. In the second, unrestricted version
of the model, the same parameters are free to vary.
Once the restricted and unrestricted versions of the
model have been fit, they can be compared through
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a likelihood ratio test:

�=−2(logLR− logLU), (15)

where LR and LU represent the likelihoods of
the restricted and unrestricted models, respectively.
Under the null hypothesis that the restricted model
is correct, the statistic � has a Chi-squared
distribution with degrees of freedom equal to the
difference in the number of parameters between the
restricted and unrestricted models.

If several non-nested models were fitted to the
data, we would usually want to select the best candi-
date from this set. The likelihood ratio test cannot
be used to select among such non-nested models.
Instead, we can compute the Akaike information
criterion (AIC, Akaike, 1974) or the Bayesian
information criterion (BIC, Schwarz, 1978):

AIC =−2logL+2m (16)

BIC=−2 logL+m log N (17)

where m is the number of free parameters in the
model and N is the number of data points being
fit. When the sample size is small compared to
the number of free parameters of the model, as
in most applications of GRT, a correction factor
equal to 2m(m+ 1)/(n2−m− 1) should be added
to the AIC (see Burnham & Anderson, 2004).
The best model is the one with the smallest AIC
or BIC.

Because an n × n confusion matrix has n(n− 1)
degrees of freedom, the maximum number of
free parameters that can be estimated from any
confusion matrix is n(n − 1). The origin and unit
of measurement on each perceptual dimension are
arbitrary. Therefore, without loss of generality, the
mean vector of one perceptual distribution can be
set to 0, and all variances of that distribution can
be set to 1.0. Therefore, if there are two perceptual
dimensions and n stimuli, then the full GRT model
has 5(n−1)+1 free distributional parameters (i.e.,
n – 1 stimuli have 5 free parameters—2 means, 2
variances, and a covariance—and the distribution
with mean 0 and all variances set to 1 has 1
free parameter—a covariance). If linear bounds are
assumed, then another 2 free parameters must be
added for every bound (e.g., slope and intercept).
With a factorial design (e.g., as when the stimulus
set is A1B1, A1B2, A2B1, and A2B2), there must be
at least one bound on each dimension to separate
each pair of consecutive component levels. So for
stimuli A1B1, A1B2, A2B1, and A2B2, at least
two bounds are required (e.g., see Figure 2.1).
If, instead, there are 3 levels of each component,

then at least 4 bounds are required. The confusion
matrix from a 2× 2 factorial experiment has 12
degrees of freedom. The full model has more
free parameters than this, so it cannot be fit
to the data from this experiment. As a result,
some restrictive assumptions are required. In a
3× 3 factorial experiment, however, the confusion
matrix has 72 degrees of freedom (9×8) and
the full model has 49 free parameters (i.e., 41
distributional parameters and 8 decision bound
parameters), so the full model can be fit to
identification data when there are at least 3 levels of
each stimulus dimension. For an alternative to the
GRT identification model presented in this section,
see Box 2.

Box 2 GRT Versus the
Similarity-Choice Model

The most widely known alternative identifi-
cation model is the similarity-choice model
(SCM; Luce, 1963; Shepard, 1957), which
assumes that

P(Rj|Si)=
ηi jβj∑

k
ηikβk

,

where ηij is the similarity between stimuli
Si and Sj and βj is the bias toward response
Rj . The SCM has had remarkable success.
For many years, it was the standard against
which competing models were compared. For
example, in 1992 J. E. K. Smith summarized
its performance by concluding that the SCM
“has never had a serious competitor as a
model of identification data. Even when it
has provided a poor model of such data,
other models have done even less well”
(p. 199). Shortly thereafter, however, the GRT
model ended this dominance, at least for
identification data collected from experiments
with stimuli that differ on only a couple of
stimulus dimensions. In virtually every such
comparison, the GRT model has provided
a substantially better fit than the SCM, in
many cases with fewer free parameters (Ashby
et al., 2001). Even so, it is important to note
that the SCM is still valuable, especially in
the case of identification experiments in which
the stimuli vary on many unknown stimulus
dimensions.
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The Summary Statistics Approach
The summary statistics approach (Ashby &

Townsend, 1986; Kadlec and Townsend, 1992a,
1992b) draws inferences about perceptual inde-
pendence, perceptual separability, and decisional
separability by using summary statistics that are
easily computed from a confusion matrix. Consider
again the factorial identification experiment with
2 levels of 2 stimulus components. As before,
we will denote the stimuli in this experiment as
A1B1, A1B2, A2B1, and A2B2. In this case, it is
convenient to denote the responses as a1b1, a1b2,
a2b1, and a2b2. The summary statistics approach
operates by computing certain summary statistics
that are derived from the 4 × 4 confusion matrix
that results from this experiment. The statistics are
computed at either the macro- or micro-level of
analysis.

macro-analyses
Macro-analyses draw conclusions about percep-

tual and decisional separability from changes in
accuracy, sensitivity, and bias measures computed
for one dimension across levels of a second di-
mension. One of the most widely used summary
statistics in macro-analysis is marginal response
invariance, which holds for a dimension when
the probability of identifying the correct level of
that dimension does not depend on the level of
any irrelevant dimensions (Ashby & Townsend,
1986). For example, marginal response invariance
requires that the probability of correctly identifying
that component A is at level 1 is the same
regardless of the level of component B, or in other
words that

P (a1 | A1B1)= P (a1 | A1B2)

Now in an identification experiment, A1 can be
correctly identified regardless of whether the level
of B is correctly identified, and so

P (a1|A1B1)= P (a1b1 | A1B1)+P (a1b2 | A1B1)

For this reason, marginal response invariance holds
on dimension X 1 if and only if

P (aib1 | AiB1)+P (aib2 | AiB1)

= P (aib1 | AiB2)+P (aib2 | AiB2) (18)

for both i = 1 and 2. Similarly, marginal response
invariance holds on dimension X 2 if and only if

f12 f22

X2

X1

g12(x1)

g11(x1) g21(x1)

d'
AB2

d'
AB1

|cAB2|

|cAB1|

g22(x1)

f11 f21

Hit
False Alarm

Fig. 2.3 Diagram explaining the relation between macro-
analytic summary statistics and the concepts of perceptual and
decisional separability.

P (a1bj | A1Bj)+P (a2bj | A1Bj)

= P (a1bj | A2Bj)+P (a2bj | A2Bj) (19)

for both j = 1 and 2.
Marginal response invariance is closely related

to perceptual and decisional separability. In fact,
if dimension X 1 is perceptually and decisionally
separable from dimension X 2, then marginal
response invariance must hold for X 1(Ashby &
Townsend, 1986). In the later section entitled
“Extensions to Response Time,” we describe how
an even stronger test is possible with a response
time version of marginal response invariance. Figure
2.3 helps to understand intuitively why perceptual
and decisional separability together imply marginal
response invariance. The top of the figure shows
the perceptual distributions of four stimuli that vary
on two dimensions. Dimension X 1 is decisionally
but not perceptually separable from dimension X 2;
the distance between the means of the perceptual
distributions along the X 1 axis is much greater
for the top two stimuli than for the bottom
two stimuli. The marginal distributions at the
bottom of Figure 2.3 show that the proportion of
correct responses, represented by the light-grey areas
under the curves, is larger in the second level of
X 2 than in the first level. The result would be
similar if perceptual separability held and decisional
separability failed, as would be the case for X 2
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if its decision bound was not perpendicular to its
main axis.

To test marginal response invariance in dimen-
sion X 1, we estimate the various probabilities in
Eq. 18 from the empirical confusion matrix that
results from this identification experiment. Next,
equality between the two sides of Eq. 18 is assessed
via a standard statistical test. These computations
are repeated for both levels of component A and
if either of the two tests is significant, then we
conclude that marginal response invariance fails,
and, therefore, that either perceptual or decisional
separability are violated.

The left side of Eq. 18 equals P(ai|AiB1)
and the right side equals P(ai|AiB2). These are
the probabilities that component Ai is correctly
identified and are analogous to “hit” rates in signal
detection theory. To emphasize this relationship, we
define the identification hit rate of component Ai on
trials when stimulus AiBj is presented as

Hai|AiBj
= P

(
ai
∣∣AiBj

)= P
(
aib1

∣∣AiBj
)

+P
(
aib2

∣∣AiBj
)

(20)

The analogous false alarm rates can be defined
similarly. For example,

Fa2|A1Bj
= P

(
a2
∣∣A1Bj

)= P
(
a2b1

∣∣A1Bj
)

+P
(
a2b2

∣∣A1Bj
)

(21)

In Figure 2.3, note that the dark grey areas
in the marginal distributions equal Fa1|A2B2 (top)
and Fa1|A2B1 (bottom). In signal detection theory,
hit and false-alarm rates are used to measure
stimulus discriminability (i.e., d ′). We can use
the identification analogues to compute marginal
discriminabilities for each stimulus component
(Thomas, 1999). For example,

d ′ABj
=�−1

(
Ha2|A2Bj

)
−�−1

(
Fa2|A1Bj

)
(22)

where the function �−1 is the inverse cumulative
distribution function for the standard normal
distribution. As shown in Figure 2.3, the value
of d

′
ABj

represents the standardized distance between

the means of the perceptual distributions of stimuli
A1Bj and A2Bj . If component A is perceptually
separable from component B, then the marginal
discriminabilities between the two levels of A must
be the same for each level of B – that is, d

′
AB1

=
d
′
AB2

(Kadlec & Townsend, 1992a, 1992b). Thus,
if this equality fails, then perceptual separability is

violated. The equality between two d ′s can be tested
using the following statistic (Marascuilo, 1970):

Z = d ′1−d ′2√
s2d ′1
+ s2d ′2

(23)

where

s2d ′ =
F (1−F )

nn
{
φ
[
�−1 (F )

]}2 +
H (1−H )

ns
{
φ
[
�−1 (H)

]}2

(24)

where φ is the standard normal probability density
function, H and F are the hit and false-alarm
rates associated with the relevant d ′, nn is the
number of trials used to compute F, and ns is the
number of trials used to compute H. Under the null
hypothesis of equal d ′s, Z follows a standard normal
distribution.

Marginal hit and false-alarm rates can also
be used to compute a marginal response crite-
rion. Several measures of response criterion and
bias have been proposed (see Chapter 2 of
Macmillan & Creelman, 2005), but perhaps the
most widely used criterion measure in recent years
(due to Kadlec, 1999) is:

cABj
=�−1

(
Fa1|A2Bj

)
(25)

As shown in Figure 2.3, this measure represents
the placement of the decision-bound relative to
the center of the A2Bj distribution. If component
A is perceptually separable from component B,
but cAB1 �= cAB2 , then decisional separability must
have failed on dimension X 1 (Kadlec & Townsend,
1992a, 1992b). On the other hand, if perceptual
separability is violated, then examining the marginal
response criteria provides no information about
decisional separability. To understand why this is
the case, note that in Figure 2.3 the marginal c
values are not equal, even though decisional sep-
arability holds. A failure of perceptual separability
has affected measures of both discriminability and
response criteria.

To test the difference between two c values, the
following test statistic can be used (Kadlec, 1999):

Z = c1− c2√
s2c1
+ s2c2

(26)

where

s2c =
F (1−F )

nn
{
φ
[
�−1 (F )

]}2 . (27)
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micro-analyses
Macro-analyses focus on properties of the entire

stimulus ensemble. In contrast, micro-analyses
test assumptions about perceptual independence
and decisional separability by examining summary
statistics computed for only one or two stimuli.

The most widely used test of perceptual inde-
pendence is via sampling independence, which holds
when the probability of reporting a combination
of components P(aibj) equals the product of the
probabilities of reporting each component alone,
P(ai)P(bj). For example, sampling independence
holds for stimulus A1B1 if and only if

P(a1b1|A1B1)= P(a1|A1B1)×P(b1|A1B1)

= [P(a1b1|A1B1)+P(a1b2|A1B1)]

× [P(a1b1|A1B1)+P(a2b1|A1B1)]
(28)

Sampling independence provides a strong test of
perceptual independence if decisional separability
holds. In fact, if decisional separability holds
on both dimensions, then sampling independence
holds if and only if perceptual independence holds
(Ashby & Townsend, 1986). Figure 2.4A gives an
intuitive illustration of this theoretical result. Two
cases are presented in which decisional separability
holds on both dimensions and the decision bounds
cross at the mean of the perceptual distribution. In
the distribution to the left, perceptual independence
holds and it is easy to see that all four responses
are equally likely. Thus, the volume of this bivariate
normal distribution in response region R4 = a2b2 is
0.25. It is also easy to see that half of each marginal
distribution lies above its relevant decision criterion
(i.e., the two shaded regions), so P(a2) = P(b2) =
0.5. As a result, sampling independence is satisfied
since P(a2b2) = P(a2) × P(b2). It turns out that
this relation holds regardless of where the bounds
are placed, as long as they remain perpendicular to
the dimension that they divide. The distribution
to the right of Figure 2.4A has the same variances
as the previous distribution, and, therefore, the
same marginal response proportions for a2 and b2.
However, in this case, the covariance is larger than
zero and it is clear that P(a2b2) > 0.25.

Perceptual independence can also be assessed
through discriminability and criterion measures
computed for one dimension conditioned on the
perceived value on the other dimension. Figure
2.4B shows the perceptual distributions of two
stimuli that share the same level of component B
(i.e., B1) and have the same perceptual mean on

dimension X 2. The decision bound perpendicular
to X 2 separates the perceptual plane into two
regions: percepts falling in the upper region elicit
an incorrect response on component B (i.e., a miss
for B), whereas percepts falling in the lower region
elicit a correct B response (i.e., a hit). The bottom
of the figure shows the marginal distribution for
each stimulus conditioned on whether B is a hit
or a miss. When perceptual independence holds,
as is the case for the stimulus to the left, these
conditional distributions have the same mean. On
the other hand, when perceptual independence does
not hold, as is the case for the stimulus to the
right, the conditional distributions have different
means, which is reflected in different d ′ and c values
depending on whether there is a hit or a miss on
B. If decisional separability holds, differences in the
conditional d ′s and cs are evidence of violations
of perceptual independence (Kadlec & Townsend,
1992a, 1992b).

Conditional d ′ and c values can be computed
from hit and false alarm rates for two stimuli differ-
ing in one dimension, conditioned on the reported
level of the second dimension. For example, for the
pair A1B1 and A2B1, conditioned on a hit on B, the
hit rate for A is P(a1b1|A1B1) and the false alarm
rate is P(a1b1|A2B1). Conditioned on a miss on B,
the hit rate for A is P(a1b2|A1B1) and the false alarm
rate is P(a1b2|A2B1). These values are used as input
to Eqs. 22–27 to reach a statistical conclusion.

Note that if perceptual independence and deci-
sional separability both hold, then the tests based
on sampling independence and equal conditional
d ′ and c should lead to the same conclusion. If
only one of these two tests holds and the other fails,
this indicates a violation of decisional separability
(Kadlec & Townsend, 1992a, 1992b).

An Empirical Example
In this section we show with a concrete example

how to analyze the data from an identification
experiment using GRT. We will first analyze the
data by fitting GRT models to the identification
confusion matrix, and then we will conduct sum-
mary statistics analyses on the same data. Finally,
we will compare the results from the two separate
analyses. Imagine that you are a researcher inter-
ested in how the age and gender of faces interact
during face recognition. You run an experiment
in which subjects must identify four stimuli, the
combination of two levels of age (teen and adult)
and two levels of gender (male and female). Each
stimulus is presented 250 times, for a total of 1,000
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Fig. 2.4 Diagram explaining the relation between micro-analytic summary statistics and the concepts of perceptual independence and
decisional separability. Panel A focuses on sampling independence and Panel B on conditional signal detection measures.

trials in the whole experiment. The data to be
analyzed are summarized in the confusion matrix
displayed in Table 2.1. These data were generated
by random sampling from the model shown in
Figure 2.5A.

The advantage of generating artificial data from
this model is that we know in advance what
conclusions should be reached by our analyses. For
example, note that decisional separability holds in
the Figure 2.5A model. Also, because the distance
between the “male” and “female” distributions is
larger for “adult” than for “teen,” gender is not
perceptually separable from age. In contrast, the
“adult” and “teen” marginal distributions are the
same across levels of gender, so age is perceptually
separable from gender. Finally, because all dis-
tributions show a positive correlation, perceptual
independence is violated for all stimuli.

A hierarchy of models were fit to the data in
Table 2.1 using maximum likelihood estimation (as
in Ashby et al., 2001; Thomas, 2001). Because
there are only 12 degrees of freedom in the

data, some parameters were fixed for all models.
Specifically, all variances were assumed to be equal
to one and decisional separability was assumed for
both dimensions. Figure 2.5C shows the hierarchy
of models used for the analysis, together with
the number of free parameters m for each of
them. In this figure, PS stands for perceptual
separability, PI for perceptual independence, DS
for decisional separability and 1_RHO describes
a model with a single correlation parameter for
all distributions. Note that several other models
could be tested, depending on specific research goals
and hypotheses, or on the results from summary
statistics analysis.

The arrows in Figure 2.5C connect models
that are nested within each other. The result
of likelihood ratio tests comparing such nested
models are displayed next to each arrow, with
an asterisk representing significantly better fit for
the more general model (lower in the hierarchy)
and n.s. representing a nonsignificant difference
in fit. Starting at the top of the hierarchy, it

m u l t i d i m e n s i o n a l s i g n a l d e t e c t i o n t h e o r y 25



Male

Ad
ul

t
Te

en
Ag

e

Fermale
Gender

Male

Ad
ul

t
Te

en
Ag

e

Fermale
Gender

{PI, PS, DS}
m = 4

{PI, PS(Age), DS}
m = 6

{PI, PS(Gender), DS}
m = 6

{1_RHO, PS, DS}
m = 5

{1_RHO, PS(Gender), DS}
m = 7

{1_RHO, PS(Age), DS}
m = 7

{1_RHO, DS}
m = 9

{PS, DS}
m = 8

{PS(Gender), DS}
m = 10

{PS(Age), DS}
m = 10

{PI, DS}
m = 8

*

**

**

*

*

n.s.

n.s

n.s. n.s.n.s.n.s.

n.s.

A

C

B

Fig. 2.5 Results of analyzing the data in Table 2.1 with GRT. Panel A shows the GRT model that was used to generate the data. Panel
B shows the recovered model from the model fitting and selection process. Panel C shows the hierarchy of models used for the analysis
and the number of free parameters (m) in each. PI stands for perceptual independence, PS for perceptual separability, DS for decisional
separability and 1_RHO for a single correlation in all distributions.

Table 2.1. Data from a simulated identification experiment with four
face stimuli, created by factorially combining two levels of gender
(male and female) and two levels of age (teen and adult).

Response

Stimulus Male/Teen Female/Teen Male/Adult Female/Adult

Male/Teen 140 36 34 40

Female/Teen 89 91 4 66

Male/Adult 85 5 90 70

Female/Adult 20 59 8 163
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Table 2.2. Results of the summary statistics analysis for the simulated Gender × Age identification experiment.

Macroanalyses

Marginal Response Invariance

Test Result Conclusion

Equal P (Gender=Male) across all Ages z = −0.09, p>.1 Yes
Equal P (Gender=Female) across all Ages z = −7.12, p<.001 No
Equal P (Age=Teen) across all Genders z = −0.39, p>.1 Yes
Equal P (Age=Adult) across all Genders z = −1.04, p>.1 Yes

Marginal d ′

Test d′ for level 1 d′ for Result Conclusion
level 2

Equal d ′ for Gender across all Ages 0.84 1.74 z = −5.09, p < .001 No
Equal d ′ for Age across all Genders 0.89 1.06 z = −1.01, p >.1 Yes

Marginal c

Test c for level 1 c for Result Conclusion
level 2

Equal c for Gender across all Ages −0.33 −1.22 z = 6.72, p < .001 No
Equal c for Age across all Genders −0.36 −0.48 z = 1.04, p >.1 Yes

Microanalyses

Sampling Independence

Stimulus Response Expected Observed Result Conclusion
Proportion Proportion

Male/Teen Male/Teen 0.49 0.56 z = 1.57, p > .1 Yes
Male/Teen Female/Teen 0.21 0.14 z = −2.05, p < .05 No
Male/Teen Male/Adult 0.21 0.14 z = −2.24, p < .05 No
Male/Teen Female/Adult 0.09 0.16 z = 2.29, p < .05 No
Female/Teen Male/Teen 0.27 0.36 z = 2.14, p < .05 No
Female/Teen Female/Teen 0.45 0.36 z = −2.01, p < .05 No
Female/Teen Male/Adult 0.23 0.02 z = −7.80, p < .001 No
Female/Teen Female/Adult 0.39 0.26 z = −3.13, p < .01 No
Male/Adult Male/Teen 0.25 0.34 z = 2.17, p < .05 No
Male/Adult Female/Teen 0.11 0.02 z = −4.09, p < .001 No
Male/Adult Male/Adult 0.21 0.36 z = 3.77, p < .001 No
Male/Adult Female/Adult 0.09 0.28 z = 5.64, p < .001 No
Female/Adult Male/Teen 0.04 0.08 z = 2.15, p < .05 No
Female/Adult Female/Teen 0.28 0.24 z = −1.14, p > .1 Yes
Female/Adult Male/Adult 0.10 0.03 z = −3.07, p < .01 No
Female/Adult Female/Adult 0.79 0.65 z = −3.44, p < .001 No

Conditional d ′

Test d ′ |Hit d ′ |Miss Result Conclusion

Equal d ′ for Gender when Age=Teen 0.84 1.48 z = −2.04, p < .05 No
Equal d ′ for Gender when Age=Adult 1.83 2.26 z = −1.27, p > .1 Yes
Equal d ′ for Age when Gender=Male 0.89 1.44 z = −1.80, p > .05 Yes
Equal d ′ for Age when Gender=Female 0.83 1.15 z = −0.70, p > .1 Yes
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Table 2.2. Continued

Conditional c

Test c |Hit c |Miss Result Conclusion

Equal c for Gender when Age=Teen −0.014 −1.58 z = 6.03, p < .001 No
Equal c for Gender when Age=Adult −1.68 −0.66 z = −4.50, p < .001 No
Equal c for Age when Gender=Male −0.04 −1.50 z = 6.05, p < .001 No
Equal c for Age when Gender=Female −0.63 0.57 z = −4.46, p < .001 No

is possible to find the best candidate models by
following the arrows with an asterisk on them
down the hierarchy. This leaves the following
candidate models: {PS, DS}, {1_RHO, PS(Age),
DS}, {1_RHO, DS}, and {PS(Gender), DS}. From
this list, we eliminate {1_RHO, DS} because it does
not fit significantly better than the more restricted
model {1_RHO, PS(Age), DS}. We also eliminate
{PS(Gender), DS} because it does not fit better than
the more restricted model {PS, DS}. This leaves two
candidate models that cannot be compared through
a likelihood ratio test, because they are not nested:
{PS, DS} and {1_RHO, PS(Age), DS}.

To compare these two models, we can use the
BIC or AIC goodness-of-fit measures introduced
earlier. The smallest corrected AIC was found
for the model {1_RHO, PS(Age), DS} (2,256.43,
compared to 2,296.97 for its competitor). This
leads to the conclusion that the model that fits these
data best assumes perceptual separability of age
from gender, violations of perceptual separability
of gender from age, and violations of perceptual
independence. This model is shown in Figure 2.5B,
and it perfectly reproduces the most important
features of the model that was used to generate
the data. However, note that the quality of this fit
depends strongly on the fact that the assumptions
used for all the models in Figure 2.5C (decisional
separability and all variances equal) are correct in
the true model. This will not be the case in many
applications, which is why it is always a good idea
to complement the model-fitting results with an
analysis of summary statistics.

The results from the summary statistics analysis
are shown in Table 2.2. The interested reader
can directly compute all the values in this table
from the data in the confusion matrix (Table
2.1). The macro-analytic tests indicate violations of
marginal response invariance, and unequal marginal
d ′ and c values for the gender dimension, both
of which suggest that gender is not perceptually
separable from age. These results are uninformative
about decisional separability. Marginal response

invariance, equal marginal d ′ and c values all
hold for the age dimension, providing some weak
evidence for perceptual and decisional separability
of age from gender.

The micro-analytic tests show violations of sam-
pling independence for all stimuli, and conditional c
values that are significantly different for all stimulus
pairs, suggesting possible violations of perceptual
independence and decisional separability. Note that
if we assumed decisional separability, as we did to
fit models to the data, the results of the micro-
analytic tests would lead to the conclusion of failure
of perceptual independence.

Thus, the results of the model fitting and
summary statistics analyses converge to similar
conclusions, which is not uncommon for real
applications of GRT. These conclusions turn out
to be correct in our example, but note that
several of them depend heavily on making correct
assumptions about decisional separability and other
features of the perceptual and decisional processes
generating the observed data.

Extensions to Response Time
There have been a number of extensions of

GRT that allow the theory to account both for
response accuracy and response time (RT). These
have differed in the amount of extra theoretical
structure that was added to the theory described
earlier. One approach was to add the fewest
and least controversial assumptions possible that
would allow GRT to make RT predictions. The
resulting model succeeds, but it offers no process
interpretation of how a decision is reached on each
trial. An alternative approach is to add enough
theoretical structure to make RT predictions and to
describe the perceptual and cognitive processes that
generated that decision. We describe each of these
approaches in turn.

The RT-Distance Hypothesis
In standard univariate signal detection theory,

the most common RT assumption is that RT
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decreases with the distance between the percep-
tual effect and the response criterion (Bindra,
Donderi, & Nishisato, 1968; Bindra, Williams,
& Wise, 1965; Emmerich, Gray, Watson, & Tanis,
1972; Smith, 1968). The obvious multivariate
analog of this, which is known as the RT-distance
hypothesis, assumes that RT decreases with the
distance between the percept and the decision
bound. Considerable experimental support for
the RT-distance hypothesis has been reported in
categorization experiments in which there is only
one decision bound and where more observability is
possible (Ashby, Boynton, & Lee, 1994; Maddox,
Ashby, & Gottlob, 1998). Efforts to incorporate
the RT-distance hypothesis into GRT have been
limited to two-choice experimental paradigms,
such as categorization or speeded classification,
which can be modeled with a single decision
bound.

The most general form of the RT-distance
hypothesis makes no assumptions about the para-
metric form of the function that relates RT and
distance to bound. The only assumption is that
this function is monotonically decreasing. Specific
functional forms are sometimes assumed. Perhaps
the most common choice is to assume that RT
decreases exponentially with distance to bound
(Maddox & Ashby, 1996; Murdock, 1985). An
advantage of assuming a specific functional form
is that it allows direct fitting to empirical RT
distributions (Maddox & Ashby, 1996).

Even without any parametric assumptions, how-
ever, monotonicity by itself is enough to derive
some strong results. For example, consider a filtering
task with stimuli A1B1, A1B2, A2B1, and A2B2,
and two perceptual dimensions X 1 and X 2, in
which the subject’s task on each trial is to name
the level of component A. Let PFA(RTi < t|AiBj)
denote the probability that the RT is less than
or equal to some value t on trials of a filtering
task when the subject correctly classified the level
of component A. Given this, then the RT analog
of marginal response invariance, referred to as
marginal RT invariance, can be defined as (Ashby &
Maddox, 1994)

PFA(RT i ≤ t | AiB1)= PFA(RT i ≤ t | AiB2) (29)

for i = 1 and 2 and for all t > 0.
Now assume that the weak version of the
RT-distance hypothesis holds (i.e., where no func-
tional form for the RT-distance relationship is
specified) and that decisional separability also holds.
Then Ashby and Maddox (1994) showed that

perceptual separability holds if and only if marginal
RT invariance holds for both correct and incorrect
responses. Note that this is an if and only if
result, which was not true for marginal response
invariance. In particular, if decisional separability
and marginal response invariance both hold, per-
ceptual separability could still be violated. But if
decisional separability, marginal RT invariance, and
the RT-distance hypothesis all hold, then perceptual
separability must be satisfied. The reason we get
the stronger result with RTs is that marginal RT
invariance requires that Eq. 29 holds for all values
of t, whereas marginal response invariance only
requires a single equality to hold. A similar strong
result could be obtained with accuracy data if
marginal response invariance were required to hold
for all possible placements of the response criterion
(i.e., the point where the vertical decision bound
intersects the X 1 axis).

Process Models of RT
At least three different process models have

been proposed that account for both RT and
accuracy within a GRT framework. Ashby (1989)
proposed a stochastic interpretation of GRT that
was instantiated in a discrete-time linear system.
In effect, the model assumed that each stimulus
component provides input into a set of parallel (and
linear) mutually interacting perceptual channels.
The channel outputs describe a point that moves
through a multidimensional perceptual space dur-
ing processing. With long exposure durations the
percept settles into an equilibrium state, and under
these conditions the model becomes equivalent to
the static version of GRT. However, the model
can also be used to make predictions in cases of
short exposure durations and when the subject
is operating under conditions of speed stress. In
addition, this model makes it possible to relate
properties like perceptual separability to network
architecture. For example, a sufficient condition for
perceptual separability to hold is that there is no
crossing of the input lines and no crosstalk between
channels.

Townsend, Houpt, and Silbert (2012) consid-
erably generalized the stochastic model proposed
by Ashby (1989) by extending it to a broad class
of parallel processing models. In particular, they
considered (almost) any model in which processing
on each stimulus dimension occurs in parallel and
the stimulus is identified as soon as processing
finishes on all dimensions. They began by extending
definitions of key GRT concepts, such as perceptual
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and decisional separability and perceptual indepen-
dence, to this broad class of parallel models. Next,
under the assumption that decisional separability
holds, they developed many RT versions of the
summary statistics tests considered earlier in this
chapter.

Ashby (2000) took a different approach. Rather
than specify a processing architecture, he pro-
posed that moment-by-moment fluctuations in the
percept could be modeled via a continuous-time
multivariate diffusion process. In two-choice tasks
with one decision bound, a signed distance is
computed to the decision bound at each point
in time; that is, in one response region simple
distance-to-bound is computed (which is always
positive), but in the response region associated with
the contrasting response the negative of distance to
bound is computed. These values are then contin-
uously integrated and this cumulative value drives
a standard diffusion process with two absorbing
barriers—one associated with each response. This
stochastic version of GRT is more biologically plau-
sible than the Ashby (1989) version (e.g., see Smith
& Ratcliff, 2004) and it establishes links to the
voluminous work on diffusion models of decision
making.

Neural Implementations of GRT
Of course, the perceptual and cognitive processes

modeled by GRT are mediated by circuits in the
brain. During the past decade or two, much has
been learned about the architecture and functioning
of these circuits. Perhaps most importantly, there
is now overwhelming evidence that humans have
multiple neuroanatomically and functionally dis-
tinct learning systems (Ashby & Maddox, 2005;
Eichenbaum, & Cohen, 2004; Squire, 1992). And
most relevant to GRT, the evidence is good that the
default decision strategy of one of these systems is
decisional separability.

The most complete description of two of the
most important learning systems is arguably pro-
vided by the COVIS theory of category learning
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998;
Ashby, Paul, & Maddox, 2011). COVIS assumes
separate rule-based and procedural-learning catego-
rization systems that compete for access to response
production. The rule-based system uses executive
attention and working memory to select and
test simple verbalizable hypotheses about category
membership. The procedural system gradually
associates categorization responses with regions
of perceptual space via reinforcement learning.

COVIS assumes that rule-based categorization is
mediated by a broad neural network that includes
the prefrontal cortex, anterior cingulate, head of the
caudate nucleus, and the hippocampus, whereas the
key structures in the procedural-learning system are
the striatum and the premotor cortex.

Virtually all decision rules that satisfy decisional
separability are easily verbalized. In fact, COVIS
assumes that the rule-based system is constrained
to use rules that satisfy decisional separability (at
least piecewise). In contrast, the COVIS procedural
system has no such constraints. Instead, it tends
to learn decision strategies that approximate the
optimal bound. As we have seen, decisional separa-
bility is optimal only under some special, restrictive
conditions. Thus, as a good first approximation,
one can assume that decisional separability holds
if subjects use their rule-based system, and that
decisional separability is likely to fail if subjects
use their procedural system. A large literature
establishes conditions that favor one system over
the other. Critical features include the nature of
the optimal decision bound, the instructions given
to the subjects, and the nature and timing of
the feedback, to name just a few (e.g., Ashby &
Maddox, 2005, 2010). For example, Ashby et al.
(2001) fit the full GRT identification model to
data from two experiments. In both, 9 similar
stimuli were constructed by factorially combining
3 levels of the same 2 stimulus components. Thus,
in stimulus space, the nine stimuli had the same
3×3 grid configuration in both experiments. In the
first experiment however, subjects were shown this
configuration beforehand and the response keypad
had the same 3× 3 grid as the stimuli. In the second
experiment, the subjects were not told that the
stimuli fell into a grid. Instead, the 9 stimuli were
randomly assigned responses from the first 9 letters
of the alphabet. In the first experiment, where
subjects knew about the grid structure, the best-
fitting GRT model assumed decisional separability
on both stimulus dimensions. In the second
experiment, where subjects lacked this knowledge,
the decision bounds of the best-fitting GRT model
violated decisional separability. Thus, one interpre-
tation of these results is that the instructions biased
subjects to use their rule-based system in the first ex-
periment and their procedural system in the second
experiment.

As we have consistently seen throughout this
chapter, decisional separability greatly simplifies
applications of GRT to behavioral data. Thus,
researchers who want to increase the probability
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that their subjects use decision strategies that satisfy
decisional separability should adopt experimental
procedures that encourage subjects to use their
rule-based learning system. For example, subjects
should be told about the factorial nature of the
stimuli, the response device should map onto
this factorial structure in a natural way, working
memory demands should be minimized (e.g., avoid
dual tasking) to ensure that working memory
capacity is available for explicit hypothesis testing
(Waldron & Ashby, 2001), and the intertrial
interval should be long enough so that sub-
jects have sufficient time to process the mean-
ing of the feedback (Maddox, Ashby, Ing, &
Pickering, 2004).

Conclusions
Multidimensional signal detection theory in gen-

eral, and GRT in particular, make two fundamental
assumptions, namely that every mental state is noisy
and that every action requires a decision. When
signal detection theory was first proposed, both
of these assumptions were controversial. We now
know, however, that every sensory, perceptual, or
cognitive process must operate in the presence of
inherent noise. There is inevitable noise in the stim-
ulus (e.g., photon noise, variability in viewpoint)
at the neural level and in secondary factors, such
as attention and motivation. Furthermore, there is
now overwhelming evidence that every volitional
action requires a decision of some sort. In fact, these
decisions are now being studied at the level of the
single neuron (e.g., Shadlen & Newsome, 2001).
Thus, multidimensional signal detection theory
captures two fundamental features of almost all
behaviors. Beyond these two assumptions, however,
the theory is flexible enough to model a wide variety
of decision processes and sensory and perceptual
interactions. For these reasons, the popularity of
multidimensional signal detection theory is likely to
grow in the coming decades.

Acknowledgments
Preparation of this chapter was supported in

part by Award Number P01NS044393 from the
National Institute of Neurological Disorders and
Stroke, by grant FA9550-12-1-0355 from the Air
Force Office of Scientific Research, and by support
from the U.S. Army Research Office through the
Institute for Collaborative Biotechnologies under
grant W911NF-07-1-0072.

Note
1. This is true except for the endpoints. Since these endpoint

intervals have infinite width, the endpoints are set at the z-value
that has equal area to the right and left in that interval (0.05 in
Figure 2.2).

Glossary
Absorbing barriers: Barriers placed around a diffusion
process that terminate the stochastic process upon first
contact. In most cases there is one barrier for each response
alternative.

Affine transformation: A transformation from an
n-dimensional space to an m-dimensional space of the form
y = Ax + b, where A is an m × n matrix and b is a vector.

Categorization experiment: An experiment in which the
subject’s task is to assign the presented stimulus to the
category to which it belongs. If there are n different stimuli
then a categorization experiment must include fewer than n
separate response alternatives.

d′: A measure of discriminability from signal detection
theory, defined as the standardized distance between the
means of the signal and noise perceptual distributions
(i.e., the mean difference divided by the common standard
deviation).

Decision bound: The set of points separating regions of
perceptual space associated with contrasting responses.

Diffusion process: A stochastic process that models the
trajectory of a microscopic particle suspended in a liquid
and subject to random displacement because of collisions
with other molecules.
Euclidean space: The standard space taught in high-
school geometry constructed from orthogonal axes of real
numbers. Frequently, the n-dimensional Euclidean space is
denoted by �n.
False Alarm: Incorrectly reporting the presence of a signal
when no signal was presented.

Hit: Correctly reporting the presence of a presented signal.

Identification experiment: An experiment in which the
subject’s task is to identify each stimulus uniquely. Thus, if
there are n different stimuli, then there must be n separate
response alternatives. Typically, on each trial, one stimulus
is selected randomly and presented to the subject. The
subject’s task is to choose the response alternative that is
uniquely associated with the presented stimulus.

Likelihood ratio: The ratio of the likelihoods associated
with two possible outcomes. If the two trial types are
equally likely, then accuracy is maximized when the subject
gives one response if the likelihood ratio is greater than 1
and the other response if the likelihood ratio is less than 1.

Multidimensional scaling: A statistical technique in which
objects or stimuli are situated in a multidimensional space
in such a way that objects that are judged or perceived
as similar are placed close together. In most approaches,
each object is represented as a single point and the space
is constructed from some type of proximity data collected
on the to-be-scaled objects. A common choice is to collect
similarity ratings on all possible stimulus pairs.
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Nested mathematical models: Two mathematical models
are nested if one is a special case of the other in which the
restricted model is obtained from the more general model
by fixing one or more parameters to certain specific values.

Nonidentifiable models: The case where two seemingly
different models make identical predictions.

Perceptual dimension: A range of perceived values of some
psychologically primary component of a stimulus.

Procedural learning: Learning that improves incremen-
tally with practice and requires immediate feedback after
each response. Prototypical examples include the learning
of athletic skills and learning to play a musical instrument.

Response bias: The tendency to favor one response
alternative in the face of equivocal sensory information.
When the frequencies of different trial types are equal, a
response bias occurs in signal detection theory whenever
the response criterion is set at any point for which the
likelihood ratio is unequal to 1.

Response criterion: In signal detection theory, this is the
point on the sensory dimension that separates percepts that
elicit one response (e.g., Yes) from percepts that elicit the
contrasting response (e.g., No).

Speeded classification: An experimental task in which
the subject must quickly categorize the stimulus according
to the level of a single stimulus dimension. A common
example is the filtering task.

Statistical decision theory: The statistical theory of
optimal decision-making.

Striatum: A major input structure within the basal ganglia
that includes the caudate nucleus and the putamen.
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